精英家教网 > 高中数学 > 题目详情
11.在数列{an}中,a1=1,an+1=$\frac{{a}_{n}}{c•{a}_{n}+1}$ (c为常数,n∈N*)且a5=a22
(1)求证:数列{$\frac{1}{{a}_{n}}$}是等差数列;
(2)求c的值;
(3)若a1,a2,a5彼此不相等,数列{an•bn}是首项为1,公比为$\frac{1}{2}$的等比数列,求:数列{bn}的前n项和为Sn

分析 (1)an≠0,由an+1=$\frac{{a}_{n}}{c•{a}_{n}+1}$,得$\frac{1}{{a}_{n+1}}$=c+$\frac{1}{{a}_{n}}$,取倒数可得$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=c,即可证明.
(2)$\frac{1}{{a}_{n}}$=1+c(n-1),a5=a22,可得1+4c=(1+c)2,解得c.
(3)c=2,$\frac{1}{{a}_{n}}$=1+2(n-1),解得an=$\frac{1}{2n-1}$.anbn=$(\frac{1}{2})^{n-1}$,得bn=(2n-1)•$(\frac{1}{2})^{n-1}$.再利用“错位相减法”与等比数列的求和公式即可得出.

解答 (1)证明:an≠0,由an+1=$\frac{{a}_{n}}{c•{a}_{n}+1}$,得$\frac{1}{{a}_{n+1}}$=c+$\frac{1}{{a}_{n}}$,∴$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=c,
∴{$\frac{1}{{a}_{n}}$}是等差数列.
(2)解:∵$\frac{1}{{a}_{n}}$=1+c(n-1),
∴$\frac{1}{{a}_{5}}$=1+4c,$\frac{1}{{a}_{2}}$=1+c,a5=a22
∴1+4c=(1+c)2,解得c=0或c=2.
(3)c=2,$\frac{1}{{a}_{n}}$=1+2(n-1)=2n-1,解得an=$\frac{1}{2n-1}$.
已知anbn=$(\frac{1}{2})^{n-1}$,得bn=(2n-1)•$(\frac{1}{2})^{n-1}$.
∴Sn=1+3×$\frac{1}{2}$+5×$(\frac{1}{2})^{2}$+…+(2n-1)•$(\frac{1}{2})^{n-1}$.
$\frac{1}{2}{S}_{n}$=$\frac{1}{2}+3×(\frac{1}{2})^{2}$+…+(2n-3)•$(\frac{1}{2})^{n-1}$+(2n-1)•$(\frac{1}{2})^{n}$.
两式相减得:$\frac{1}{2}{S}_{n}$=1+2$[\frac{1}{2}+(\frac{1}{2})^{2}+…+(\frac{1}{2})^{n-1}$-$(2n-1)(\frac{1}{2})^{n}]$=3-(2n+3)×$(\frac{1}{2})^{n}$,
Sn=6-(2n+3)×$(\frac{1}{2})^{n-1}$.

点评 本题考查了等差数列与等比数列的通项公式与求和公式、“错位相减法”、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.函数f(x)=x+$\frac{4}{x-3}$,x∈(3,+∞)的最小值为(  )
A.3B.4C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知钝角α满足cosα=-$\frac{3}{5}$,则tan(α+$\frac{π}{4}$)的值为$-\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将函数$f(x)=3sin({2x+\frac{π}{3}})$的图象向右平移$\frac{π}{2}$个单位长度,所得图象对应的函数(  )
A.其中一条对称轴方程为$x=-\frac{π}{6}$B.在区间$[{\frac{π}{12},\frac{7π}{12}}]$上单调递增
C.当$x=\frac{π}{12}+kπ({k∈Z})$时取得最大值D.在区间$[{-\frac{π}{6},\frac{π}{3}}]$上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.下列结论正确的是①②④
①在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.35,则ξ在(0,2)内取值的概率为0.7;
②以模型y=cekx去拟合一组数据时,为了求出回归方程,设z=lny,其变换后得到线性回归方程z=0.3x+4,则c=e4
③已知命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1”的逆否命题是“若m>1,则函数f(x)=ex-mx在(0,+∞)上是减函数”是真命题;
④设常数a,b∈R,则不等式ax2-(a+b-1)x+b>0对?x>1恒成立的充要条件是a≥b-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知正方形ABCD的顶点坐标分别为A(0,1),B(2,0),C(3,2).
(1)求CD边所在直线的方程;
(2)求以AC为直径的圆M的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.过圆(x-1)2+y2=1外一点(3,0)作圆的切线,则切线的长为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=(x2-8x+c1)(x2-8x+c2)(x2-8x+c3)(x2-8x+c4),集合M={x|f(x)=0}={x1,x2,x3,…,x7}⊆N*,设c1≥c2≥c3≥c4则c1-c4=(  )
A.11B.13C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.f(x)是奇函数,当x≥0时,f(x)=2x(1-x),则$f(-\frac{1}{2})$=(  )
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案