分析 (1)an≠0,由an+1=$\frac{{a}_{n}}{c•{a}_{n}+1}$,得$\frac{1}{{a}_{n+1}}$=c+$\frac{1}{{a}_{n}}$,取倒数可得$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=c,即可证明.
(2)$\frac{1}{{a}_{n}}$=1+c(n-1),a5=a22,可得1+4c=(1+c)2,解得c.
(3)c=2,$\frac{1}{{a}_{n}}$=1+2(n-1),解得an=$\frac{1}{2n-1}$.anbn=$(\frac{1}{2})^{n-1}$,得bn=(2n-1)•$(\frac{1}{2})^{n-1}$.再利用“错位相减法”与等比数列的求和公式即可得出.
解答 (1)证明:an≠0,由an+1=$\frac{{a}_{n}}{c•{a}_{n}+1}$,得$\frac{1}{{a}_{n+1}}$=c+$\frac{1}{{a}_{n}}$,∴$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=c,
∴{$\frac{1}{{a}_{n}}$}是等差数列.
(2)解:∵$\frac{1}{{a}_{n}}$=1+c(n-1),
∴$\frac{1}{{a}_{5}}$=1+4c,$\frac{1}{{a}_{2}}$=1+c,a5=a22,
∴1+4c=(1+c)2,解得c=0或c=2.
(3)c=2,$\frac{1}{{a}_{n}}$=1+2(n-1)=2n-1,解得an=$\frac{1}{2n-1}$.
已知anbn=$(\frac{1}{2})^{n-1}$,得bn=(2n-1)•$(\frac{1}{2})^{n-1}$.
∴Sn=1+3×$\frac{1}{2}$+5×$(\frac{1}{2})^{2}$+…+(2n-1)•$(\frac{1}{2})^{n-1}$.
$\frac{1}{2}{S}_{n}$=$\frac{1}{2}+3×(\frac{1}{2})^{2}$+…+(2n-3)•$(\frac{1}{2})^{n-1}$+(2n-1)•$(\frac{1}{2})^{n}$.
两式相减得:$\frac{1}{2}{S}_{n}$=1+2$[\frac{1}{2}+(\frac{1}{2})^{2}+…+(\frac{1}{2})^{n-1}$-$(2n-1)(\frac{1}{2})^{n}]$=3-(2n+3)×$(\frac{1}{2})^{n}$,
Sn=6-(2n+3)×$(\frac{1}{2})^{n-1}$.
点评 本题考查了等差数列与等比数列的通项公式与求和公式、“错位相减法”、数列递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 其中一条对称轴方程为$x=-\frac{π}{6}$ | B. | 在区间$[{\frac{π}{12},\frac{7π}{12}}]$上单调递增 | ||
| C. | 当$x=\frac{π}{12}+kπ({k∈Z})$时取得最大值 | D. | 在区间$[{-\frac{π}{6},\frac{π}{3}}]$上单调递增 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 11 | B. | 13 | C. | 7 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | -$\frac{3}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com