精英家教网 > 高中数学 > 题目详情
1.f(x)是奇函数,当x≥0时,f(x)=2x(1-x),则$f(-\frac{1}{2})$=(  )
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

分析 利用函数的奇偶性,以及函数的解析式,求解函数值即可.

解答 解:f(x)是奇函数,当x≥0时,f(x)=2x(1-x),则$f(-\frac{1}{2})$=-f($\frac{1}{2}$)=-(2×$\frac{1}{2}(1-\frac{1}{2})$)=-$\frac{1}{2}$.
故选:C.

点评 本题考查函数的奇偶性以及函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在数列{an}中,a1=1,an+1=$\frac{{a}_{n}}{c•{a}_{n}+1}$ (c为常数,n∈N*)且a5=a22
(1)求证:数列{$\frac{1}{{a}_{n}}$}是等差数列;
(2)求c的值;
(3)若a1,a2,a5彼此不相等,数列{an•bn}是首项为1,公比为$\frac{1}{2}$的等比数列,求:数列{bn}的前n项和为Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等差数列{an}满足:$\frac{{{a_{11}}}}{{{a_{10}}}}<-1$,且它的前n项和Sn有最大值,则当Sn取到最小正值时,n=19.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知圆 C1:x2+y2+2x+3y+1=0,圆 C2:x2+y2+4x+3y+2=0,圆C1与圆C2的位置关系为(  )
A.外切B.相离C.相交D.内切

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若奇函数f(x)在[1,3]上是增函数,且最小值是1,则它在[-3,-1]上是(  )
A.增函数,最小值-1B.增函数,最大值-1C.减函数,最小值-1D.减函数,最大值-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某四棱柱的三视图如图所示,则该四棱柱的体积为(  )
A.$\frac{5}{4}$B.$\frac{3}{2}$C.$\frac{5}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若椭圆$\frac{{y}^{2}}{100}+\frac{{x}^{2}}{36}$=1上一点P到焦点F1的距离等于6,点P到另一个焦点F2的距离是(  )
A.20B.14C.4D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C的对边分别为a,b,c.
(1)若a,b,c成等比数列,cos B=$\frac{3}{5}$,求$\frac{cosA}{sinA}+\frac{cosC}{sinC}$的值.
(2)若角A,B,C成等差数列,且b=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)$\sqrt{\frac{25}{9}}-{({\frac{8}{27}})^{\frac{1}{3}}}-{(π+e)^0}+{({\frac{1}{4}})^{-\frac{1}{2}}}$
(2)$\frac{lg8+lg125-lg2-lg5}{{lg\sqrt{10}lg0.1}}$
(3)已知a,b,c为正实数,ax=by=cz,$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$,求abc的值.

查看答案和解析>>

同步练习册答案