精英家教网 > 高中数学 > 题目详情
15.已知关于x的不等式|x+2|+|x+3|<a有解,则实数a的取值范围是(1,+∞).

分析 由条件利用绝对值三角不等式求得|x+2|+|x+3|≥1,结合题意可得a的范围.

解答 解:∵|x+2|+|x+3|≥|(x=2)-(x+3)|=1,结合关于x的不等式|x+2|+|x+3|<a有解,
可得a>1,
故答案为:(1,+∞).

点评 本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知集合M={x|x2-4x+3<0},N={x|0<x<2},则M∩(∁RN)=(  )
A.(2,3)B.[2,3)C.(-3,-1)D.(-1,0)∪[2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.关于x的方程sinx+cosx=cos2x(x∈[-π,π])的所有解之和为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥P-ABCD中,底面ABCD是梯形,PA⊥底面ABCD,其中BA⊥AD,AD∥BC,AC与BD交于点O,M是AB边上的点,且$BM=\frac{1}{3}BA$,已知PA=AD=4,AB=3,BC=2.
(Ⅰ)求平面PAD与平面PMC所成锐二面角的正切值;
(Ⅱ)已知N是PM上一点,且ON∥平面PCD,求$\frac{PM}{PN}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列关于斜二测画法下的直观图的说法正确的是(  )
A.互相垂直的两条直线的直观图一定是互相垂直的两条直线
B.梯形的直观图可能是平行四边形
C.矩形的直观图可能是梯形
D.正方形的直观图可能是平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.为了解某社区居民的家庭年收入x(万元)与年支出y(万元)的关系,现随机调查了该社区4户家庭,列表如下,从点数图可以看出y与x线性相关,若y与x之间的回归方程为$\widehat{y}$=0.95x+a,则年收入为10万元时,年支出的预测值为(  )万元
x万元 3
y万元 2.2 4.3 4.8 6.7
A.11.7B.12.85C.11.45D.12.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知A={x||x-1|>0},B={x|(x-1)2-3≥0},则A∩B=(  )
A.(-∞,0)∪(2,+∞)B.(-∞,1-$\sqrt{3}$]∪[1+$\sqrt{3}$,+∞)C.(-∞,1-$\sqrt{3}$]∪[2,+∞)D.(-∞,0)∪[1+$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.不等式x2-bx+1>0的解集为一切实数,则b的取值范围是-2<b<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.不等式$\frac{2x-1}{1+3x}$≤1的解集为M,函数f(x)=lg$\frac{4+x}{4-x}$的定义域为N,则M∩N=(-$\frac{1}{3}$,0].

查看答案和解析>>

同步练习册答案