精英家教网 > 高中数学 > 题目详情
已知.
(1)求函数的最大值;
(2)设,且,证明:.
(1)0;(2)证明过程详见解析.

试题分析:本题主要考查导数的运算、利用导数研究函数的单调性、最值等基础知识,同时考查分析问题解决问题的综合解题能力和计算能力.第一问,对求导,由于单调递增,单调递减,判断出函数的单调性,求出函数的最大值;第二问,根据第一问的结论将定义域分成2部分,当时,函数为单调递减,所以,所以一定小于1,当时,只需证明即可,构造新函数,对求导,判断的单调性,求出的最小值为0,所以,所以,即.
试题解析:(Ⅰ)
时,单调递增;
时,单调递减.
所以的最大值为.       5分
(Ⅱ)由(Ⅰ)知,当时,.     7分
时,等价于设
,则
时,,则
从而当时,单调递减.
时,,即
综上,总有.        12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,试确定函数的单调区间;
(2)若,且对于任意恒成立,试确定实数的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若处取得极值,求实数的值;
(2)求函数的单调区间;
(3)若上没有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知处取得极值,且在点处的切线斜率为.
⑴求的单调增区间;
⑵若关于的方程在区间上恰有两个不相等的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数.下列命题:(  )
①函数的图象关于原点对称; ②函数是周期函数;
③当时,函数取最大值;④函数的图象与函数的图象没有公共点,其中正确命题的序号是
A.①③ B.②③C.①④D.②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调递减区间是____________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果关于x的方程ax+=3在区间(0,+∞)上有且仅有一个解,那么实数a的取值范围为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ln x+ax(a∈R).
(1)求f(x)的单调区间;
(2)设g(x)=x2-4x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=x3+2x2+mx+1在(-∞,+∞)内单调递增的充要条件是    .

查看答案和解析>>

同步练习册答案