精英家教网 > 高中数学 > 题目详情
如果关于x的方程ax+=3在区间(0,+∞)上有且仅有一个解,那么实数a的取值范围为________.
a≤0或a=2
由ax+=3,得a=.
令t=,则f(t)=3t-t3,t∈(0,+∞).
用导数研究f(t)的图象,得fmax(t)=2,当x∈(0,1)时,f(t)递增,当x∈(1,+∞)时,f(t)递减,所以a≤0或a=2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,试判断并用定义证明函数的单调性;
(2)当时,求函数的最大值的表达式

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知.
(1)求函数的最大值;
(2)设,且,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-3ax2+2bx在点x=1处有极小值-1.
(1)求ab
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数下列结论中① ②函数的图象是中心对称图形 ③若的极小值点,则在区间单调递减 ④若的极值点,则. 正确的个数有(       )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(其中为常数且)在处取得极值.
(I) 当时,求的单调区间;
(II) 若上的最大值为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=(x2+ax+b)ex(x∈R).
(1)若a=2,b=-2,求函数f(x)的极大值;
(2)若x=1是函数f(x)的一个极值点.
①试用a表示b;
②设a>0,函数g(x)=(a2+14)ex+4.若?ξ1、ξ2∈[0,4],使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线ya与函数yx3-3x的图象有三个相异的交点,则a的取值范围为 (  ).
A.(-2,2)B.[-2,2]
C.[2,+∞)D.(-∞,-2]

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数上是单调减函数,则实数的取值范围是___________.

查看答案和解析>>

同步练习册答案