分析 利用切割线定理,可得PA,利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2,即可得出结论
解答 解:∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,
∴PA2=PB•PC,
∵PC=2PA,PB=$\frac{3}{4}$,
∴PA2=$\frac{3}{4}$•2PA,
∴PA=$\frac{3}{2}$.
∵PA2=PB•PC,PC=2PA,
∴PA=2PB,
∴PD=2PB,
∴PB=BD=$\frac{3}{4}$,
∴BD•DC=PB•2PB,
∵AD•DE=BD•DC,
∴AD•DE=2PB2=$\frac{9}{8}$.
故答案为:$\frac{9}{8}$.
点评 本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com