精英家教网 > 高中数学 > 题目详情
已知集合A={x|0<x<3,x∈R},B={x|-2<x<2,x∈R},那么集合A∩B=
 
考点:交集及其运算
专题:集合
分析:直接利用交集的运算得答案.
解答: 解:∵A={x|0<x<3,x∈R},B={x|-2<x<2,x∈R},
则A∩B={x|0<x<3,x∈R}∩{x|-2<x<2,x∈R}={x|0<x<2}.
故答案为:{x|0<x<2}.
点评:本题考查了交集及其运算,是基础的概念题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三次函数f(x)=x3+bx2+cx+d(a,b,c∈R)过点(3,0),且函数f(x)在点(0,f(0))处的切线恰好是直线y=0.
(1)求函数f(x)的解析式;
(2)设函数g(x)=9x+m-1,若函数y=f(x)-g(x)在区间[-2,1]上有两个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式ax2-2x+4≥0的解集为R,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列x,6,y,12,则xy的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x+2cosx在[0,
π
2
]上的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=
1-x2
|x+2|-2
为奇函数;
②奇函数的图象一定通过直角坐标系的原点;
③函数y=2 
1
x
的值域是(0,+∞);
④若函数f(2x)的定义域为[1,2],则函数f(2x)的定义域为[1,2];
⑤函数y=lg(-x2+2x)的单调递增区间是(0,1].
其中正确命题的序号是
 
.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C所对应的边长分别为a,b,c,且bcosA=3,asinB=4,则边长b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,若S4=1,S8=4,则a21+a22+a23+a24=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,输出的s值为
 

查看答案和解析>>

同步练习册答案