精英家教网 > 高中数学 > 题目详情
18.一个袋中装有1个红球,1个黄球和两个小立方体,两个球除了颜色外都相同,两个立方体中一个每一面都涂红,另一个每个面都涂黄,除此以外它们都相同,从袋中摸出一个球和一个立方体,下面说法中错误的是(  )
A.所有可能出现的结果有四种B.摸出2个都是红的概率为$\frac{1}{4}$
C.摸出2个都是黄的概率为$\frac{1}{4}$D.摸出一红一黄的概率也是$\frac{1}{4}$

分析 从袋中摸出一个球和一个立方体,用列举法写所有可能出现的情况,由此能求出正确答案.

解答 解:∵一个袋中装有1个红球,1个黄球和两个小立方体,
两个球除了颜色外都相同,两个立方体中一个每一面都涂红,另一个每个面都涂黄,除此以外它们都相同,
从袋中摸出一个球和一个立方体,
∴所有可能出现的结果有:(红球,红立方体),(红球,黄立方体),(黄球,红立方体),(黄球,黄立方体),共四种,
∴摸出2个都是红的概率为p1=$\frac{1}{4}$,摸出2个都是黄的概率为p2=$\frac{1}{4}$,摸出一红一黄的概率为${p}_{3}=\frac{2}{4}=\frac{1}{2}$,
故A、B、C都正确,D错误.
故选:D.

点评 本题考查命题真假的判断,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,平面PAD⊥平面ABCD,ABCD为正方形,∠PAD=90°,且PA=AD,E、F分别是线段PA、CD的中点.
(1)求证:PA⊥平面ABCD;
(2)求异面直线EF与BD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.随机变量X的分布列如表所示,则EX=1.7.
X0123
p0.10.30.40.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图:在直三棱柱ABC-A1B1C1中,AA1=BC=AC=2,AC⊥BC.
(1)求多面体ABC-A1C1的体积;
(2)异面直线A1B与AC1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数y=f(x)的定义域为D,若对于任意的x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)的对称中心.研究函数f(x)=x+sinπx-3的某个对称中心,并利用对称中心的上述定义,可求得f($\frac{1}{2015}$)+f($\frac{2}{2015}$)$+f(\frac{3}{2015}$)+…+f($\frac{4028}{2015}$)+f($\frac{4029}{2015}$)的值为-8058.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设三棱柱ABC-A1B1C1为正三棱柱,底面边长及侧棱长均为a,E、F分别是AA1,CC1的中点,求几何体B-EFB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.不等式组$\left\{\begin{array}{l}{x≥1}\\{y≥0}\\{x-y≥0}\end{array}$,则z=$\frac{y-1}{x}$的取值范围是(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一几何体的三视图如图所示,其中侧(左)视图和俯视图都是腰长为2的等腰直角三角形,则此几何体体积的大小为(  )
A.3B.4C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=2-sin2x是(  )
A.周期为π的奇函数B.周期为π的偶函数
C.周期为2π的奇函数D.周期为2π的偶函数

查看答案和解析>>

同步练习册答案