精英家教网 > 高中数学 > 题目详情
13.设函数y=f(x)的定义域为D,若对于任意的x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)的对称中心.研究函数f(x)=x+sinπx-3的某个对称中心,并利用对称中心的上述定义,可求得f($\frac{1}{2015}$)+f($\frac{2}{2015}$)$+f(\frac{3}{2015}$)+…+f($\frac{4028}{2015}$)+f($\frac{4029}{2015}$)的值为-8058.

分析 由已知得f(x)=x+sinπx-3的一个对称中心为(1,-2),由此能求出f($\frac{1}{2015}$)+f($\frac{2}{2015}$)+f($\frac{3}{2015}$)+…+f($\frac{4028}{2015}$)+f($\frac{4029}{2015}$)的值.

解答 解:在f(x)=x+sinπx-3中,
若x1+x2=2,
则f(x1)+f(x2)=(x1+x2)+sin(x1π)+sin(x2π)-6
=2+sin(x1π)+sin(2π-x1π)-6
=-4,
∴f(x)=x+sinπx-3的一个对称中心为(1,-2),
∴f($\frac{1}{2015}$)+f($\frac{2}{2015}$)+f($\frac{3}{2015}$)+…+f($\frac{4028}{2015}$)+f($\frac{4029}{2015}$)
=2014×(-4)+f($\frac{2015}{2015}$)
=-8056+(1+sinπ-3)
=-8058.
故答案为:-8058.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意正弦函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A(2,1),离心率为$\frac{\sqrt{2}}{2}$,过点B(3,0)的直线l与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)求$\overrightarrow{BM}$•$\overrightarrow{BN}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=t+3\\ y=3-t\end{array}\right.$(参数t∈R),圆C的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ+2\end{array}\right.$(参数θ∈[0,2π)),圆心到直线l的距离为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.要从5名男生,3名女生中选出3人作为学生代表参加社区活动,且女生人数不多于男生人数,那么不同的选法种数有40种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}是公差不为零的等差数列,a1=2,且a2,a4,a8成等比数列.则数列{an}的通项公式为an=2n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个袋中装有1个红球,1个黄球和两个小立方体,两个球除了颜色外都相同,两个立方体中一个每一面都涂红,另一个每个面都涂黄,除此以外它们都相同,从袋中摸出一个球和一个立方体,下面说法中错误的是(  )
A.所有可能出现的结果有四种B.摸出2个都是红的概率为$\frac{1}{4}$
C.摸出2个都是黄的概率为$\frac{1}{4}$D.摸出一红一黄的概率也是$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点F到渐近线和直线$x=\frac{a^2}{c}$的距离之比为2:1,则双曲线的渐近线方程为(  )
A.y=±$\frac{\sqrt{3}}{3}$xB.y=±$\sqrt{2}$xC.y=±$\sqrt{3}$xD.y=±2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,有一辆汽车在一条水平的公路上向正西行驶,汽车在A点测得公路北侧山顶D的仰角为30°,汽车行驶300m后到达B点测得山顶D恰好在正北方,且仰角为45°,则山的高度CD为(  )
A.150$\sqrt{2}$B.150$\sqrt{3}$C.300$\sqrt{2}$D.300$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)图1为某几何体的三视图,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,求该几何体的表面积. 
(2)图2为某几何体三视图,已知三角形的三边长与圆的直径均为2,求该几何体的体积.

查看答案和解析>>

同步练习册答案