精英家教网 > 高中数学 > 题目详情
15.在直角坐标系xOy中,曲线C1:$\left\{{\begin{array}{l}{x=3+αcost}\\{y=2+αsint}\end{array}}\right.$(t为参数,a>0),在以坐标原点为极点,x轴的非负半轴为极轴的极坐标系中,曲线C2:ρ=4sinθ.
(1)试将曲线C1与C2化为直角坐标系xOy中的普通方程,并指出两曲线有公共点时a的取值范围;
(2)当a=3时,两曲线相交于A,B两点,求|AB|的值.

分析 (1)曲线C1消去参数t,得到曲线C1的普通方程为(x-3)2+(y-2)2=a2.由ρ=4sinθ,得ρ2=4ρsinθ,能求出曲线C2的普通方程为x2+(y-2)2=4.曲线C1是以C1(3,2)为圆心,r1=a为半径的圆,曲线C2是以(0,2)为圆心,r2=2为半径的圆,由此能当两曲线有公共点时a的取值范围.
(2)当a=3时,曲线C1为(x-3)2+(y-2)2=9,联立方程$\left\{\begin{array}{l}{(x-3)^2}+{(y-2)^2}=9\\{x^2}+{({y-2})^2}=4\end{array}\right.$,得两曲线的交点A,B所在直线方程为$x=\frac{2}{3}$,曲线x2+(y-2)2=4的圆心到直线$x=\frac{2}{3}$的距离为$d=\frac{2}{3}$,由此能求出|AB|.

解答 解:(1)曲线C1:$\left\{{\begin{array}{l}{x=3+αcost}\\{y=2+αsint}\end{array}}\right.$消去参数t,
得到曲线C1的普通方程为(x-3)2+(y-2)2=a2
由ρ=4sinθ,得ρ2=4ρsinθ.
故曲线C2:ρ=4sinθ化为平面直角坐标系中的普通方程为x2+(y-2)2=4.
曲线C1是以C1(3,2)为圆心,r1=a为半径的圆,
曲线C2是以(0,2)为圆心,r2=2为半径的圆,
|C1C2|=3,∴当两曲线有公共点时,|a-2|≤3≤a+2,解得1≤a≤5,
∴当两曲线有公共点时a的取值范围为[1,5].
(2)当a=3时,曲线C1:$\left\{{\begin{array}{l}{x=3+3cost}\\{y=2+3sint}\end{array}}\right.$,即(x-3)2+(y-2)2=9,
联立方程$\left\{\begin{array}{l}{(x-3)^2}+{(y-2)^2}=9\\{x^2}+{({y-2})^2}=4\end{array}\right.$消去y,得两曲线的交点A,B所在直线方程为$x=\frac{2}{3}$.
曲线x2+(y-2)2=4的圆心到直线$x=\frac{2}{3}$的距离为$d=\frac{2}{3}$,
所以$|AB|=2\sqrt{4-\frac{4}{9}}=\frac{{8\sqrt{2}}}{3}$.

点评 本题考查圆的普通方程的求法,考查弦长的求法,考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.如图,矩形ADFE,矩形CDFG,正方形ABCD两两垂直,且AB=2,若线段DE上存在点P使得GP⊥BP,则边CG长度的最小值为  (  )
A.4B.$4\sqrt{3}$C.2D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设x∈{y∈N|0≤y≤9},则log2x∈N的概率为(  )
A.$\frac{1}{3}$B.$\frac{4}{9}$C.$\frac{3}{10}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题中真命题的是(  )
A.若a>b,则ac2>bc2
B.实数a,b,c满足b2=ac,则a,b,c成等比数列
C.若$θ∈({0,\frac{π}{2}})$,则$y=sinθ+\frac{2}{sinθ}$的最小值为$2\sqrt{2}$
D.若数列{n2+λn}为递增数列,则λ>-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等比数列{bn}的公比为$\frac{1}{2}$,数列{an}满足a1=1,a2=3,an+1-an=2n•bn
(1)求{an}和{bn}的通项公式;
(2)求$\{\frac{a_n}{b_n}\}$的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.cos45°cos15°+sin15°sin45°的值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+3x,数列{an}的前n项和为Sn,点$(n,{S_n})(n∈{N^*})$均在函数y=f(x) 的图象上.
(1)求数列{an}的通项公式;
(2)令${b_n}=\frac{a_n}{2^n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.不等式(a-3)x2+2(a-3)x-4<0对于一切x∈R恒成立,那么a的取值范围是(  )
A.(-∞,-3)B.(-1,3]C.(-∞,-3]D.(-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若关于x的二次方程mx2+(2m-1)x-m+2=0(m>0)的两个互异的实根都小于1,则实数m的取值范围是($\frac{3+\sqrt{7}}{4}$,+∞).

查看答案和解析>>

同步练习册答案