分析 设扇形的圆心角的弧度数为α,半径为r,弧长为l,面积为S,由面积公式和周长可得到关于l和r的方程组,求出l和r,由弧度的定义求α即可.求出a,利用正弦函数的图象与性质,可得结论.
解答 解:S=$\frac{1}{2}$(8-2r)r=4,r2-4r+4=0,r=2,l=4,|α|=$\frac{l}{r}$=2.
若点(a,9)在函数y=3x的图象上,则a=2,
不等式sin2x≥$\frac{\sqrt{3}}{2}$,则$\frac{π}{3}$+2kπ≤2x≤$\frac{2π}{3}$+2kπ,k∈Z,
∴$\frac{π}{6}$+kπ≤x≤$\frac{π}{3}$+kπ,k∈Z,
∴不等式sin2x≥$\frac{\sqrt{3}}{2}$的解集为{x|$\frac{π}{6}$+kπ≤x≤$\frac{π}{3}$+kπ,k∈Z}.
故答案为:2,{x|$\frac{π}{6}$+kπ≤x≤$\frac{π}{3}$+kπ,k∈Z}.
点评 本题考查弧度的定义、扇形的面积公式,考查三角不等式,属基本运算的考查.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{3}{2}$) | B. | ($\frac{3}{2}$,0) | C. | (0,$\frac{1}{24}$) | D. | ($\frac{1}{24}$,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 奇函数,在 (0,+∞)上是增函数 | B. | 奇函数,在 (0,+∞)上是减函数 | ||
| C. | 偶函数,在 (0,+∞)上是减函数 | D. | 偶函数,在 (0,+∞)上是增函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| x | 1 | 2 | 3 |
| f(x) | 2 | 3 | 1 |
| g(x) | 3 | 2 | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com