精英家教网 > 高中数学 > 题目详情
11.下列关于函数 y=ln|x|的叙述正确的是(  )
A.奇函数,在 (0,+∞)上是增函数B.奇函数,在 (0,+∞)上是减函数
C.偶函数,在 (0,+∞)上是减函数D.偶函数,在 (0,+∞)上是增函数

分析 根据函数的奇偶性的性质以及y=ln|x|进行判断.

解答 解:函数 y=f(x)=ln|x|,
则f(-x)=ln|-x|=f(x)
∴函数 y=ln|x|是偶函数.图象关于y轴对称.
根据对数函数的性质:可知:y=lnx在(0,+∞)上是增函数,即函数 y=ln|x|在 (0,+∞)上也是增函数.
故选D.

点评 本题考查了函数的奇偶性的判断和单调性的判断.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设集合A={x|a-3<x<a+3},B={x|x2-2x-3>0}.
(1)若a=3,求A∩B,A∪B;
(2)若A∪B=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)为定义在R上的奇函数,且在(0,+∞)为减函数,若f(2)=0,不等式(x-1)f(x-1)>0的解集为(-∞,-1)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知sinα=$\frac{1}{3}$,求$\frac{si{n}^{2}α}{co{s}^{2}α}$+sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知某扇形的面积为4cm2,周长为8cm,则此扇形圆心角的弧度数是2;若点(a,9)在函数y=3x的图象上,则不等式$sinax≥\frac{{\sqrt{3}}}{2}$的解集为{x|$\frac{π}{6}$+kπ≤x≤$\frac{π}{3}$+kπ,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求值:
(1)$2\sqrt{3}×\root{3}{1.5}×\root{6}{12}$;
(2)${log_8}27•{log_3}4+{3^{{{log}_3}2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知定义域为R的函数$f(x)=\frac{{-{2^x}+1}}{{{2^x}+1}}$.
(1)用定义证明:f(x)为R上的奇函数;
(2)用定义证明:f(x)在R上为减函数;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,另两名员工数据不清楚,那么8位员工月工资的中位数不可能是(  )
A.5800B.6000C.6200D.6400

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点P(2,-1),求:
(1)过P点与原点O距离为2的直线l的方程;
(2)是否存在过P点与原点O距离为6的直线?若存在,求出方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案