精英家教网 > 高中数学 > 题目详情
2.△ABC内角A、B、C的对边分别为a、b、c,已知a-bsin($\frac{π}{2}$-C)=c•sinB.
(1)求B;
(2)若b=2,求△ABC面积的最大值.

分析 (1)利用正弦定理、和差公式可得cosBsinC=sinCsinB,又sinC≠0,化为tanB=1,即可得出.
(2)利用余弦定理与基本不等式的性质即可得出.

解答 解:(1)由a-bsin($\frac{π}{2}$-C)=c•sinB,利用正弦定理可得:sinA-sinBcosC=sinCsinB,∴sin(B+C)-sinBcosC=sinCsinB,∴cosBsinC=sinCsinB,
∵sinC≠0,∴tanB=1,B∈(0,π),∴B=$\frac{π}{4}$.
(2)由余弦定理可得:22=a2+c2-2accos$\frac{π}{4}$≥2ac-$\sqrt{2}$ac,当且仅当a=c时取等号.
化为:ac≤4+2$\sqrt{2}$.
∴S△ABC=$\frac{1}{2}$acsinB≤$\frac{1}{2}×(4+2\sqrt{2})$×$\frac{\sqrt{2}}{2}$=$\sqrt{2}$+1.

点评 本题考查了正弦定理余弦定理、和差公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知正实数a,b满足$\frac{a+b}{ab}$=1,则a+2b的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知n为正整数,在(1+x)2n与(1+2x3n展开式中x3项的系数相同,求:
(1)n的值.
(2)(1+2x3n展开式中二项式系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知复数z满足z•(i-i2)=1+i3,其中i为虚数单位,则z=-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=$\frac{1}{2}$x2-lnx在其定义域的一个子区间(k-1,k+1)上不是单调函数,则实数k的取值范围是(  )
A.(1,2)B.[1,2)C.[0,2)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.曲线f(x)=x+lnx在x=1处的切线方程是(  )
A.y=x-1B.y=x-2C.y=2x-1D.y=2x-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知极坐标的极点在平面直角坐标系的原点O处,极轴与x轴的正半轴重合,且长度单位相同.直线l的极坐标方程为:ρsin(θ-$\frac{π}{3}$)=$\sqrt{3}$,若点P为曲线C:$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$,(α为参数)上的动点,其中参数α∈[0,2π].
(1)试写出直线l的直角坐标方程及曲线C的普通方程;
(2)求点P到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是正方形,E,F分别是PA,PD边上的中点,且PD=AB=2.
(1)求EF∥平面PBC;
(2)求四棱锥P-ABCD的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦点分别为F1、F2,离心率e=$\frac{\sqrt{2}}{2}$,与双曲线${x^2}-{y^2}=\frac{1}{2}$有相同的焦点.
(I)求椭圆C的标准方程;
(II)过点F1的直线l与该椭圆C交于M、N两点,且|$\overrightarrow{{F}_{2}M}$+$\overrightarrow{{F}_{2}}$N|=$\frac{2\sqrt{26}}{3}$,求直线l的方程.
(Ⅲ)是否存在圆心在原点的圆,使得该圆的任一条切线与椭圆C有两个交点A、B,且OA⊥OB?若存在,写出该圆的方程,否则,说明理由.

查看答案和解析>>

同步练习册答案