精英家教网 > 高中数学 > 题目详情
11.如图,四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是正方形,E,F分别是PA,PD边上的中点,且PD=AB=2.
(1)求EF∥平面PBC;
(2)求四棱锥P-ABCD的表面积.

分析 (1)利用中位线定理和平行公理即可得出EF∥BC,从而EF∥平面PBC;
(2)证明BC⊥平面PCD,AB⊥平面PAD,故而AB⊥PA,BC⊥PC,于是四个侧面全为直角三角形,从而可求得表面积.

解答 证明:(1)∵E,F分别是PA,PD边上的中点,
∴EF∥AD,又AD∥BC,
∴EF∥BC,又EF?面PBC,BC?面PBC,
∴EF∥平面PBC.
(2)∵PD⊥底面ABCD,AD?平面ABCD,CD?平面ABCD,BC?平面ABCD,
∴PD⊥AD,PD⊥CD,PD⊥BC,
又BC⊥CD,CD∩PD=D,
∴BC⊥平面PCD,∵PC?平面PCD,
∴BC⊥PC,同理可得AB⊥PA.
∴棱锥的四个侧面均为直角三角形,
∵PD=AB=2,底面ABCD是正方形,
∴PA=PC=2$\sqrt{2}$,
∴S△PAD=S△PCD=$\frac{1}{2}×2×2$=2,S底面ABCD=22=4,
S△PAB=S△PBC=$\frac{1}{2}×2×2\sqrt{2}$=2$\sqrt{2}$.
∴四棱锥P-ABCD的表面积S=2S△PDA+2S△PAB+S正方形ABCD=8+4$\sqrt{2}$.

点评 本题考查了线面平行的判定,线面垂直的判定,棱锥表面积的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆C的中心为原点O,长轴在x轴上,离心率e=$\frac{{\sqrt{2}}}{2}$,过左焦点F1作x轴的垂线交椭圆于A,A'两点,|AA'|=$\sqrt{2}$.
(1)求椭圆C的标准方程;
(2)若直线l与圆O:x2+y2=1相交于不同的两点E,F,与椭圆C相交于不同的两点G,H,求△OEF的面积最大时弦长|GH|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.△ABC内角A、B、C的对边分别为a、b、c,已知a-bsin($\frac{π}{2}$-C)=c•sinB.
(1)求B;
(2)若b=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在等差数列{an}中,a1+a2=5,a3+a4=17.
(1)求数列{an}的通项公式;
(2)记数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和为Sn,求Sn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\frac{1}{2}$ax3-$\frac{3}{2}$x2+$\frac{3}{2}$a2x(a∈R)在x=1处取得极大值,则a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.假设你家订了一份牛奶,奶哥在早上6:00---7:00之间随机地把牛奶送到你家,而你在早上6:30---7:30之间随机地离家上学,则你在离开家前能收到牛奶的概率是(  )
A.$\frac{1}{8}$B.$\frac{5}{8}$C.$\frac{1}{2}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某学校甲、乙两个班各派10名同学参加英语口语比赛,并记录他们的成绩,得到如图所示的茎叶图.现拟定在各班中分数超过本班平均分的同学为“口语王”.
(Ⅰ)记甲班“口语王”人数为m,乙班“口语王”人数为n,比较m,n的大小;
(Ⅱ)求甲班10名同学口语成绩的方差.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知A,B,C三点不在同一条直线上,O是平面ABC内一定点,P是△ABC内的一动点,若$\overrightarrow{OP}$-$\overrightarrow{OA}$=λ($\overrightarrow{AC}$+$\frac{1}{2}$$\overrightarrow{CB}$),λ∈[0,+∞),则直线AP一定过△ABC的(  )
A.重心B.垂心C.外心D.内心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列各式的值:
(1)若$\frac{π}{2}$<α<π,且$sinα=\frac{4}{5}$,求$\frac{sin(2π-α)tan(π+α)cos(-π+α)}{{sin(\frac{π}{2}-α)cos(\frac{π}{2}+α)}}$的值,
(2)化简$\frac{sin(α+nπ)+sin(α-nπ)}{sin(α+nπ)cos(α-nπ)}$.

查看答案和解析>>

同步练习册答案