精英家教网 > 高中数学 > 题目详情
1.已知椭圆C的中心为原点O,长轴在x轴上,离心率e=$\frac{{\sqrt{2}}}{2}$,过左焦点F1作x轴的垂线交椭圆于A,A'两点,|AA'|=$\sqrt{2}$.
(1)求椭圆C的标准方程;
(2)若直线l与圆O:x2+y2=1相交于不同的两点E,F,与椭圆C相交于不同的两点G,H,求△OEF的面积最大时弦长|GH|的取值范围.

分析 (1)由椭圆C的离心率e=$\frac{{\sqrt{2}}}{2}$,过左焦点F1作x轴的垂线交椭圆于A,A'两点,|AA'|=$\sqrt{2}$,列出方程组求出a,b,由此能求出椭圆的标准方程.
(2)当$∠EOF=\frac{π}{2}$时,S△OEF最大,此时|EF|=$\sqrt{2}$,点O到直线l的距离为d=$\frac{\sqrt{2}}{2}$,当直线l的斜率不存在时,满足条件的直线方程为x=$±\frac{\sqrt{2}}{2}$,当直线l的斜率存在时,设直线方程为y=kx+m,联立方程组$\left\{\begin{array}{l}y=kx+m\\{x^2}+2{y^2}=2\end{array}\right.$,得(2k2+1)x2+4kmx+2m2-2=0,由此利用韦达定理、弦长公式,结合已知能求出△OEF的面积最大时弦长|GH|的取值范围.

解答 解:(1)∵椭圆C的中心为原点O,长轴在x轴上,离心率e=$\frac{{\sqrt{2}}}{2}$,
过左焦点F1作x轴的垂线交椭圆于A,A'两点,|AA'|=$\sqrt{2}$.
∴设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,
依题意有:$\left\{\begin{array}{l}e=\frac{c}{a}=\frac{{\sqrt{2}}}{2}\\|{AA'}|=\frac{{2{b^2}}}{a}=\sqrt{2}\end{array}\right.$,
又a2=b2+c2
解得:$a=\sqrt{2},b=1,c=1$,
∴椭圆的标准方程为:$\frac{x^2}{2}+{y^2}=1$.
(2)依题意:${S}_{△OEF}=\frac{1}{2}$|OE|•|OF|sin$∠EOF=\frac{1}{2}$sin∠EOF,
∴当$∠EOF=\frac{π}{2}$时,S△OEF最大,此时|EF|=$\sqrt{2}$,
点O到直线l的距离为d=$\frac{\sqrt{2}}{2}$,
当直线l的斜率不存在时,满足条件的直线方程为x=$±\frac{\sqrt{2}}{2}$,此时|GH|=$\sqrt{3}$
当直线l的斜率存在时,设直线方程为y=kx+m
其中$d=\frac{|m|}{{\sqrt{1+{k^2}}}}=\frac{{\sqrt{2}}}{2}$,于是2m2=1+k2
联立方程组$\left\{\begin{array}{l}y=kx+m\\{x^2}+2{y^2}=2\end{array}\right.$得(2k2+1)x2+4kmx+2m2-2=0,
设G(x1,y1),H(x2,y2),则${x_1}+{x_2}=\frac{-4km}{{2{k^2}+1}},{x_1}{x_2}=\frac{{2{m^2}-2}}{{2{k^2}+1}}$,
于是,由弦长公式可得:$|{GH}|=\sqrt{1+{k^2}}•\sqrt{{{({{x_1}+{x_2}})}^2}-4{x_1}{x_2}}$=$\sqrt{1+{k^2}}•\sqrt{{{({\frac{-4km}{{2{k^2}+1}}})}^2}-4\frac{{2{m^2}-2}}{{2{k^2}+1}}}=\frac{{\sqrt{1+{k^2}}}}{{2{k^2}+1}}\sqrt{16{k^2}+8-8{m^2}}$,
代入2m2=1+k2得$|{GH}|=\frac{{2\sqrt{1+{k^2}}•\sqrt{3{k^2}+1}}}{{2{k^2}+1}}$
令t=2k2+1≥1,则${k^2}=\frac{t-1}{2}$代入上式得:$|{GH}|=\sqrt{\frac{{3{t^2}+2t-1}}{t^2}}=\sqrt{-\frac{1}{t^2}+\frac{2}{t}+3}$,
由于t≥1,所以$0<\frac{1}{t}≤1$,于是$\sqrt{3}<|{GH}|≤2$
综上所述:$\sqrt{3}≤|{GH}|≤2$.

点评 本题考查椭圆方程的求法,考查△OEF的面积最大时弦长|GH|的取值范围的求法,是中档题,解题时要认真审题,注意韦达定理、弦长公式、椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知点F(1,0),点A是直线l1:x=-1上的动点,过A作直线l2,l1⊥l2,线段AF的垂直平分线与l2交于点P.
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)若点M,N是直线l1上两个不同的点,且△PMN的内切圆方程为x2+y2=1,直线PF的斜率为k,求$\frac{|k|}{|MN|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知正实数a,b满足$\frac{a+b}{ab}$=1,则a+2b的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.分别抛掷2枚质地均匀的硬币,设A是事件“第一枚为正面”,B是事件“第二枚为正面”,C是事件“2枚结果相同”.则事件A与B,事件B与C,事件A与C中相互独立的有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.命题p:?x∈(0,+∞),lnx>x-1,则命题p的否定是(  )
A.¬p:?x∉(0,+∞),lnx≤x-1B.¬p:?x∈(0,+∞),lnx≤x-1
C.¬p:?x∉(0,+∞),lnx≥x-1D.¬p:?x∈(0,+∞),lnx≤x-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)化简Sn=1+2a+3a2+4a3+…+nan-1,a≠0,n∈N*
(2)已知等比数列{an}中,a1=3,a4=81,若数列{bn}满足bn=log3an,则数列{$\frac{1}{{{b_n}{b_{n+1}}}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知n为正整数,在(1+x)2n与(1+2x3n展开式中x3项的系数相同,求:
(1)n的值.
(2)(1+2x3n展开式中二项式系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知复数z满足z•(i-i2)=1+i3,其中i为虚数单位,则z=-i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是正方形,E,F分别是PA,PD边上的中点,且PD=AB=2.
(1)求EF∥平面PBC;
(2)求四棱锥P-ABCD的表面积.

查看答案和解析>>

同步练习册答案