分析 (Ⅰ)点P到点F(1,0)的距离等于它到直线l1的距离,从而点P的轨迹是以点F为焦点,直线l1:x=-1为准线的抛物线,由此能求出曲线C的方程.
(Ⅱ)设P(x0,y0),点M(-1,m),点N(-1,n),直线PM的方程为(y0-m)x-(x0+1)y+(y0-m)+m(x0+1)=0,△PMN的内切圆的方程为x2+y2=1,圆心(0,0)到直线PM的距离为1,由x0>1,得(x0-1)m2+2y0m-(x0+1)=0,同理,$({x}_{0}-1){n}^{2}+2{{y}_{0}n-({x}_{0}+1)=0}^{\;}$,由此利用韦达定理、弦长公式、直线斜率,结合已知条件能求出$\frac{|k|}{|MN|}$的取值范围.
解答 解:(Ⅰ)∵点F(1,0),点A是直线l1:x=-1上的动点,过A作直线l2,l1⊥l2,线段AF的垂直平分线与l2交于点P,
∴点P到点F(1,0)的距离等于它到直线l1的距离,
∴点P的轨迹是以点F为焦点,直线l1:x=-1为准线的抛物线,
∴曲线C的方程为y2=4x.
(Ⅱ)设P(x0,y0),点M(-1,m),点N(-1,n),
直线PM的方程为:y-m=$\frac{{y}_{0}-m}{{x}_{0}+1}$(x+1),
化简,得(y0-m)x-(x0+1)y+(y0-m)+m(x0+1)=0,
∵△PMN的内切圆的方程为x2+y2=1,
∴圆心(0,0)到直线PM的距离为1,即$\frac{|{y}_{0}-m+m({x}_{0}+1)|}{\sqrt{({y}_{0}-m)^{2}+({x}_{0}+1)^{2}}}$=1,
∴$({y}_{0}-m)^{2}+({x}_{0}+1)^{2}$=$({y}_{0}-m)^{2}+2m({y}_{0}-m)({x}_{0}+1)+{m}^{2}$$({x}_{0}+1)^{2}$,
由题意得x0>1,∴上式化简,得(x0-1)m2+2y0m-(x0+1)=0,
同理,有$({x}_{0}-1){n}^{2}+2{{y}_{0}n-({x}_{0}+1)=0}^{\;}$,
∴m,n是关于t的方程(x0-1)t2+2y${{\;}_{0}}^{\;}$t-(x0+1)=0的两根,
∴m+n=$\frac{-2{y}_{0}}{{x}_{0}-1}$,mn=$\frac{-({x}_{0}+1)}{{x}_{0}-1}$,
∴|MN|=|m-n|=$\sqrt{(m+n)^{2}-4mn}$=$\sqrt{\frac{4{{y}_{0}}^{2}}{({x}_{0}-1)^{2}}+\frac{4({x}_{0}+1)}{{x}_{0}-1}}$,
∵${{y}_{0}}^{2}=4{x}_{0}$,|y0|=2$\sqrt{{x}_{0}}$,
∴|MN|=$\sqrt{\frac{16{x}_{0}}{({x}_{0}-1)^{2}}+\frac{4({x}_{0}+1)}{{x}_{0}-1}}$=2$\sqrt{\frac{{{x}_{0}}^{2}+4{x}_{0}-1}{({x}_{0}-1)^{2}}}$,
直线PF的斜率$k=\frac{{y}_{0}}{{x}_{0}-1}$,则k=|$\frac{{y}_{0}}{{x}_{0}-1}$|=$\frac{2\sqrt{{x}_{0}}}{|{x}_{0}-1|}$,
∴$\frac{|k|}{|MN|}$=$\sqrt{\frac{{x}_{0}}{{{x}_{0}}^{2}+4{x}_{0}-1}}$=$\sqrt{\frac{1}{{x}_{0}-\frac{1}{{x}_{0}}+4}}$,
∵函数y=x-$\frac{1}{x}$在(1,+∞)上单调递增,
∴${x}_{0}-\frac{1}{{x}_{0}}>1-1=0$,
∴$0<\frac{1}{{x}_{0}-\frac{1}{{x}_{0}}+4}<\frac{1}{4}$,
∴0<$\frac{|k|}{|MN|}$<$\frac{1}{2}$.
∴$\frac{|k|}{|MN|}$的取值范围是(0,$\frac{1}{2}$).
点评 本题考查点的轨迹方程的求法,考查代数式的取值范围的求法,是中档题,解题时要认真审题,注意抛物线定义、椭圆性质、韦达定理、弦长公式、直线斜率的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 12个 | B. | 10个 | C. | 8个 | D. | 6个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 关于极轴所在直线对称 | B. | 重合 | ||
| C. | 关于直线$θ=\frac{π}{2}(ρ∈R)$对称 | D. | 关于极点对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 内心 | B. | 外心 | C. | 垂心 | D. | 重心 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com