分析 (1)设等差数列{an}的公差为d,运用等差数列的通项公式an=a1+(n-1)d,解方程,即可得到所求通项;
(2)求得$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}$($\frac{1}{3n-2}$-$\frac{1}{3n+1}$),再由数列的求和方法:裂项相消求和,化简即可得到所求和.
解答 解:(1)设等差数列{an}的公差为d,
可得2a1+d=5,2a1+5d=17,
解得a1=1,d=3,
则an=a1+(n-1)d=1+3(n-1)=3n-2;
(2)$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}$($\frac{1}{3n-2}$-$\frac{1}{3n+1}$),
则前n项和Sn=$\frac{1}{3}$[(1-$\frac{1}{4}$)+($\frac{1}{4}$-$\frac{1}{7}$)+($\frac{1}{7}$-$\frac{1}{10}$)+…+($\frac{1}{3n-2}$-$\frac{1}{3n+1}$)]
=$\frac{1}{3}$(1-$\frac{1}{3n+1}$)=$\frac{n}{3n+1}$.
点评 本题考查等差数列的通项公式的运用,考查数列的求和方法:裂项相消求和,以及化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\widehat{y}$=-0.2x+3.3 | B. | $\widehat{y}$=0.4x+1.5 | C. | $\widehat{y}$=2x-3.2 | D. | $\widehat{y}$=-2x+8.6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | 7 | D. | 16 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com