精英家教网 > 高中数学 > 题目详情
10.已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的
前16项之和S16等于(  )
A.5B.6C.7D.16

分析 该数列为{an},由从第二项起,每一项都等于它的前后两项之和,得an+1=an+an+2,从而有an+2=an+1+an+3,两式相加后通过变形可推得数列周期,由周期性可求得答案.

解答 解:设该数列为{an},从第二项起,每一项都等于它的前后两项之和,即an+1=an+an+2
则an+2=an+1+an+3
两式相加,得an+3+an=0,即an+3=-an
∴an+6=-an+3=-(-an)=an
∴该数列的周期为6,
∴a1+a2+a3+a4+a5+a6=5+6+1-5-6-1=0,
∴前16项之和S16=2×(a1+a2+a3+a4+a5+a6)+a1+a2+a3+a4=5+6+1-5=7,
故答案为:C.

点评 本题考查数列的求和及数列的函数特性,利用条件推导该数列的周期,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在等差数列{an}中,a1+a2=5,a3+a4=17.
(1)求数列{an}的通项公式;
(2)记数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和为Sn,求Sn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知A,B,C三点不在同一条直线上,O是平面ABC内一定点,P是△ABC内的一动点,若$\overrightarrow{OP}$-$\overrightarrow{OA}$=λ($\overrightarrow{AC}$+$\frac{1}{2}$$\overrightarrow{CB}$),λ∈[0,+∞),则直线AP一定过△ABC的(  )
A.重心B.垂心C.外心D.内心

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的渐近线方程为y=±$\frac{1}{2}$x,且焦点到渐近线的距离为$\sqrt{3}$,则双曲线的方程为(  )
A.$\frac{x^2}{4}-{y^2}$=1B.$\frac{x^2}{3}-\frac{y^2}{12}$=1C.$\frac{x^2}{12}-\frac{y^2}{3}$=1D.${x^2}-\frac{y^2}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a|-a(a∈R).若?x∈R,f(x+2016)>f(x),则实数a的取值范围是a<504.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图所示,4个小动物换座位,开始时鼠,猴,兔,猫分别坐1,2,3,4号座位,如果第1次前后排动物互换座位,第2次左右列动物互换座位,第3次前后排动物互换座位,…,这样交替进行下去,那么第2 015次互换座位后,小兔坐在(  )号座位上.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列各式的值:
(1)若$\frac{π}{2}$<α<π,且$sinα=\frac{4}{5}$,求$\frac{sin(2π-α)tan(π+α)cos(-π+α)}{{sin(\frac{π}{2}-α)cos(\frac{π}{2}+α)}}$的值,
(2)化简$\frac{sin(α+nπ)+sin(α-nπ)}{sin(α+nπ)cos(α-nπ)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若${(2-x)^4}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+{a_4}{x^4}$,则a1+a2+a3+a4=(  )
A.-15B.15C.-16D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=xex-k(x+1)2,(k∈R)
(1)k=$\frac{e}{2}$时,求f(x)的单调区间和极值;
(2)若f(x)在R上只有一个零点,求k的取值范围.

查看答案和解析>>

同步练习册答案