| A. | 5 | B. | 6 | C. | 7 | D. | 16 |
分析 该数列为{an},由从第二项起,每一项都等于它的前后两项之和,得an+1=an+an+2,从而有an+2=an+1+an+3,两式相加后通过变形可推得数列周期,由周期性可求得答案.
解答 解:设该数列为{an},从第二项起,每一项都等于它的前后两项之和,即an+1=an+an+2,
则an+2=an+1+an+3,
两式相加,得an+3+an=0,即an+3=-an,
∴an+6=-an+3=-(-an)=an,
∴该数列的周期为6,
∴a1+a2+a3+a4+a5+a6=5+6+1-5-6-1=0,
∴前16项之和S16=2×(a1+a2+a3+a4+a5+a6)+a1+a2+a3+a4=5+6+1-5=7,
故答案为:C.
点评 本题考查数列的求和及数列的函数特性,利用条件推导该数列的周期,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 重心 | B. | 垂心 | C. | 外心 | D. | 内心 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{4}-{y^2}$=1 | B. | $\frac{x^2}{3}-\frac{y^2}{12}$=1 | C. | $\frac{x^2}{12}-\frac{y^2}{3}$=1 | D. | ${x^2}-\frac{y^2}{4}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -15 | B. | 15 | C. | -16 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com