精英家教网 > 高中数学 > 题目详情
14.已知极坐标的极点在平面直角坐标系的原点O处,极轴与x轴的正半轴重合,且长度单位相同.直线l的极坐标方程为:ρsin(θ-$\frac{π}{3}$)=$\sqrt{3}$,若点P为曲线C:$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$,(α为参数)上的动点,其中参数α∈[0,2π].
(1)试写出直线l的直角坐标方程及曲线C的普通方程;
(2)求点P到直线l距离的最大值.

分析 (1)由ρsin(θ-$\frac{π}{3}$)=$\sqrt{3}$,展开ρsinθ-$\sqrt{3}$ρcosθ=2$\sqrt{3}$,利用互化公式即可得出直线l的直角坐标方程.曲线C:$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$,且参数α∈[0,2π],利用三角函数基本关系式的平方关系消去参数α可知曲线C的普通方程.
(2)由(1)点P的轨迹方程为(x-2)2+y2=4,圆心为C(2,0),半径为2.利用点到直线的距离公式可得圆心C到直线l的距离d,可得点P到直线l距离的最大值为d+r.

解答 解:(1)∵ρsin(θ-$\frac{π}{3}$)=$\sqrt{3}$,∴ρsinθ-$\sqrt{3}$ρcosθ=2$\sqrt{3}$,
∴直线l的直角坐标方程为:y-$\sqrt{3}$x=2$\sqrt{3}$.
曲线C:$\left\{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}\right.$,且参数α∈[0,2π],
消去参数α可知曲线C的普通方程为:(x-2)2+y2=4.
(2)由(1)点P的轨迹方程为(x-2)2+y2=4,圆心为C(2,0),半径为2.
圆心C到直线l的距离d=$\frac{|2\sqrt{3}-0+2\sqrt{3}|}{\sqrt{(\sqrt{3})^{2}+1}}$=2$\sqrt{3}$,
∴点P到直线l距离的最大值为$2\sqrt{3}$+2.

点评 本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)满足f(1)=2,f(x+1)=$\frac{1+f(x)}{1-f(x)}$,则f(1)•f(2)•f(3)…f(23)的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在边长为1的正三角形ABC中,$\overrightarrow{BC}$=2$\overrightarrow{BD}$,则$\overrightarrow{AD}$•$\overrightarrow{AB}$=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.△ABC内角A、B、C的对边分别为a、b、c,已知a-bsin($\frac{π}{2}$-C)=c•sinB.
(1)求B;
(2)若b=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知:$\overrightarrow a$=(-$\sqrt{3}$sinωx,cosωx),$\overrightarrow b$=(cosωx,cosωx),ω>0,记函数f(x)=$\overrightarrow a$•$\overrightarrow b$,且f(x)的最小正周期为π.
(1)求ω的值;
(2)求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在等差数列{an}中,a1+a2=5,a3+a4=17.
(1)求数列{an}的通项公式;
(2)记数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和为Sn,求Sn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\frac{1}{2}$ax3-$\frac{3}{2}$x2+$\frac{3}{2}$a2x(a∈R)在x=1处取得极大值,则a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某学校甲、乙两个班各派10名同学参加英语口语比赛,并记录他们的成绩,得到如图所示的茎叶图.现拟定在各班中分数超过本班平均分的同学为“口语王”.
(Ⅰ)记甲班“口语王”人数为m,乙班“口语王”人数为n,比较m,n的大小;
(Ⅱ)求甲班10名同学口语成绩的方差.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a|-a(a∈R).若?x∈R,f(x+2016)>f(x),则实数a的取值范围是a<504.

查看答案和解析>>

同步练习册答案