精英家教网 > 高中数学 > 题目详情
8.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点F(1,0),离心率为$\frac{{\sqrt{2}}}{2}$,过F作两条互相垂直的弦AB,CD,设AB,CD的中点分别为M,N.
(1)求椭圆的方程;
(2)证明:直线MN必过定点,并求出此定点坐标;
(3)若弦AB,CD的斜率均存在,求△FMN面积的最大值.

分析 (1)根据题意确定出c与e的值,利用离心率公式求出a的值,进而求出b的值,确定出椭圆方程即可;
(2)由直线AB与CD向量存在,设为k,表示出AB方程,设出A与B坐标,进而表示出M坐标,联立直线AB与椭圆方程,消去y得到关于x的一元二次方程,利用根与系数的关系表示出M,同理表示出N,根据M与N横坐标相同求出k的值,得到此时MN斜率不存在,直线MN恒过定点;若直线MN斜率存在,表示出直线MN斜率,进而表示出直线MN,令y=0,求出x的值,得到直线MN恒过定点,综上,得到直线MN恒过定点,求出定点坐标即可;
(3)根据P坐标,得到OP的长,由OF-OP表示出PF长,三角形MNF面积等于三角形PMF面积加上三角形PNF面积,利用基本不等式求出面积的最大值即可.

解答 解:(1)由题意:c=1,$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,
∴a=$\sqrt{2}$,b=c=1,
则椭圆的方程为$\frac{{x}^{2}}{2}$+y2=1;
(2)∵AB,CD斜率均存在,
∴设直线AB方程为:y=k(x-1),
再设A(x1,y1),B(x2,y2),则有M($\frac{{x}_{1}+{x}_{2}}{2}$,k($\frac{{x}_{1}+{x}_{2}}{2}$-1)),
联立得:$\left\{{\begin{array}{l}{y=k(x-1)}\\{{x^2}+2{y^2}-2=0}\end{array}}\right.$,
消去y得:(1+2k2)x2-4k2x+2k2-2=0,
∴$\left\{{\begin{array}{l}{{x_1}+{x_2}=\frac{{4{k^2}}}{{1+2{k^2}}}}\\{{x_1}{x_2}=\frac{{2{k^2}-2}}{{1+2{k^2}}}}\end{array}}\right.$,即M($\frac{2{k}^{2}}{1+2{k}^{2}}$,$\frac{-k}{1+2{k}^{2}}$),
将上式中的k换成-$\frac{1}{k}$,同理可得:N($\frac{2}{2+{k}^{2}}$,$\frac{k}{2+{k}^{2}}$),
若$\frac{2{k}^{2}}{1+2{k}^{2}}$=$\frac{2}{2+{k}^{2}}$,解得:k=±1,直线MN斜率不存在,
此时直线MN过点($\frac{2}{3}$,0);
下证动直线MN过定点P($\frac{2}{3}$,0),
若直线MN斜率存在,则kMN=$\frac{\frac{-k}{1+2{k}^{2}}-\frac{k}{2+{k}^{2}}}{\frac{2{k}^{2}}{1+2{k}^{2}}-\frac{2}{2+{k}^{2}}}$=$\frac{-k(3{k}^{2}+3)}{2{k}^{4}-2}$=$\frac{3}{2}$×$\frac{-k}{{k}^{2}-1}$,
直线MN为y-$\frac{k}{2+{k}^{2}}$=$\frac{3}{2}$×$\frac{-k}{{k}^{2}-1}$(x-$\frac{2}{2+{k}^{2}}$),
令y=0,得x=$\frac{2}{2+{k}^{2}}$+$\frac{2}{3}$×$\frac{{k}^{2}-1}{2+{k}^{2}}$=$\frac{2}{3}$×$\frac{3+{k}^{2}-1}{2+{k}^{2}}$=$\frac{2}{3}$,
综上,直线MN过定点($\frac{2}{3}$,0);
(3)由第(2)问可知直线MN过定点P($\frac{2}{3}$,0),
故S△FMN=S△FPM+S△FPN=$\frac{1}{2}$×$\frac{1}{3}$|$\frac{k}{2+{k}^{2}}$|+$\frac{1}{2}$×$\frac{1}{3}$|$\frac{-k}{1+2{k}^{2}}$=$\frac{1}{2}$×$\frac{(|k|+\frac{1}{|k|})}{2{k}^{2}+\frac{2}{{k}^{2}}+5}$,
令t=|k|+$\frac{1}{|k|}$∈[2,+∞),S△FMN=f(t)=$\frac{1}{2}$×$\frac{t}{2({t}^{2}-2)+5}$=$\frac{1}{2}$×$\frac{t}{2{t}^{2}+1}$,
∴f(t)在t∈[2,+∞)单调递减,
当t=2时,f(t)取得最大值,即S△FMN最大值$\frac{1}{9}$,此时k=±1.

点评 此题考查了椭圆的简单性质,根与系数的关系,中点坐标公式,以及直线两点式方程,熟练掌握椭圆的简单性质是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知(x1,y1),(x2,y2)是方程组$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$的两组解,求(x1-x22+(y1-y22的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在等差数列{an}中,a1+a2=5,a3+a4=17.
(1)求数列{an}的通项公式;
(2)记数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和为Sn,求Sn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.假设你家订了一份牛奶,奶哥在早上6:00---7:00之间随机地把牛奶送到你家,而你在早上6:30---7:30之间随机地离家上学,则你在离开家前能收到牛奶的概率是(  )
A.$\frac{1}{8}$B.$\frac{5}{8}$C.$\frac{1}{2}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某学校甲、乙两个班各派10名同学参加英语口语比赛,并记录他们的成绩,得到如图所示的茎叶图.现拟定在各班中分数超过本班平均分的同学为“口语王”.
(Ⅰ)记甲班“口语王”人数为m,乙班“口语王”人数为n,比较m,n的大小;
(Ⅱ)求甲班10名同学口语成绩的方差.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设复数z满足(1+i)z=|$\sqrt{3}$+i|,其中i为虚数单位,则在复平面内,z对应的点的坐标是(  )
A.($\sqrt{2}$,-$\sqrt{2}$)B.(1,-1)C.(1,-i)D.(2,-2i)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知A,B,C三点不在同一条直线上,O是平面ABC内一定点,P是△ABC内的一动点,若$\overrightarrow{OP}$-$\overrightarrow{OA}$=λ($\overrightarrow{AC}$+$\frac{1}{2}$$\overrightarrow{CB}$),λ∈[0,+∞),则直线AP一定过△ABC的(  )
A.重心B.垂心C.外心D.内心

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的渐近线方程为y=±$\frac{1}{2}$x,且焦点到渐近线的距离为$\sqrt{3}$,则双曲线的方程为(  )
A.$\frac{x^2}{4}-{y^2}$=1B.$\frac{x^2}{3}-\frac{y^2}{12}$=1C.$\frac{x^2}{12}-\frac{y^2}{3}$=1D.${x^2}-\frac{y^2}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若${(2-x)^4}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+{a_4}{x^4}$,则a1+a2+a3+a4=(  )
A.-15B.15C.-16D.16

查看答案和解析>>

同步练习册答案