精英家教网 > 高中数学 > 题目详情
9.已知下列命题:
①命题:?x∈(0,2),3x>x3的否定是:?x∈(0,2),3x≤x3
②若f(x)=2x-2-x,则?x∈R,f(-x)=-f(x);
③若f(x)=x+$\frac{1}{x+1}$,则?x0∈(0,+∞),f(x0)=1;
④等差数列{an}的前n项和为Sn,若a4=3,则S7=21;
⑤在△ABC中,若A>B,则sinA>sinB.
其中真命题是①②④⑤.(只填写序号)

分析 ①根据含有量词的命题的否定形式判定;
②若f(x)=2x-2-x,则?x∈R,f(-x)=-f(x),;
③对于函数f(x)=x+$\frac{1}{x+1}$,当且仅当x=1时,f(x)=1;
④$\frac{7}{2}({a}_{1}+{a}_{7})=\frac{7}{2}×2{a}_{4}=7{a}_{4}=21$,;
⑤若A>B,则a>b,⇒2RsinA>2RsinB⇒sinA>sinB,.

解答 解:对于①,命题:?x∈(0,2),3x>x3的否定是:?x∈(0,2),3x≤x3,正确;
对于②,若f(x)=2x-2-x,则?x∈R,f(-x)=-f(x),正确;
对于③,对于函数f(x)=x+$\frac{1}{x+1}$,当且仅当x=0时,f(x)=1,故错;
对于④,等差数列{an}的前n项和为Sn,若a4=3,$\frac{7}{2}({a}_{1}+{a}_{7})=\frac{7}{2}×2{a}_{4}=7{a}_{4}=21$,故正确;
对于⑤,在△ABC中,若A>B,则a>b⇒2RsinA>2RsinB⇒sinA>sinB,故正确.
故答案为:①②④⑤

点评 本题考查了命题真假的判定,涉及到了函数、数列等基础知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,AS=AB=1,$BC=\sqrt{3}$,则球O的表面积为5π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义在R上的函数y=f(x)为减函数,且函数y=f(x-1)的图象关于点(1,0)对称,若f(x2-2x)+f(2b-b2)≤0,且0≤x≤2,则x-b的取值范围是(  )
A.[-2,0]B.[-2,2]C.[0,2]D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设x,y满足不等式组$\left\{\begin{array}{l}{x+y-6≤0}\\{x-y-2≤0}\\{x≥0}\end{array}\right.$,则z=-2x+y的最小值为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等比数列{an}的首项为1,若4a1,2a2,a3成等差数列,则数列{$\frac{1}{{a}_{n}}$}的前5项和为(  )
A.$\frac{33}{16}$B.2C.$\frac{31}{16}$D.$\frac{31}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知sinα+cosα=$\frac{1-\sqrt{3}}{2}$,且0<α<π,则tanα的值为(  )
A.-$\frac{\sqrt{3}}{3}$B.-$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四边形ABCD是矩形,DA⊥平面ABE,AE=EB=BC=2,F为线段CE上一点,且BF⊥平面ACE,AC交BD于点G.
(1)证明:AE∥平面BFD;
(2)求直线DE与平面ACE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知定义在R上的奇函数f(x),当x>0时,f(x)的表达式是二次函数,且f(1)=0,f(3)=0,f(2)=-1.
(1)求f(x),x∈(0,+∞)的表达式
(2)画函数y=f(x),x∈R的图象
(3)说出函数y=f(x),x∈(-5,-1]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知i是虚数单位,若$\frac{1+2i}{z}$=2-i,则z的模为(  )
A.$\sqrt{5}$B.2C.iD.1

查看答案和解析>>

同步练习册答案