精英家教网 > 高中数学 > 题目详情
2.过圆x2+y2=5上一点M(2,-1)作圆的切线,则该切线的方程为2x-y-5=0.

分析 由圆的方程找出圆心坐标和圆的半径,然后求出M与圆心的距离判断出M在圆上即M为切点,根据圆的切线垂直于过切点的直径,由圆心和M的坐标求出OM确定直线方程的斜率,根据两直线垂直时斜率乘积为-1,求出切线的斜率,根据M坐标和求出的斜率写出切线方程即可.

解答 解:由圆x2+y2=5,得到圆心A的坐标为(0,0),圆的半径r=$\sqrt{5}$,
而|AM|=$\sqrt{5}$=r,所以M在圆上,则过M作圆的切线与AM所在的直线垂直,
又M(2,-1),得到AM所在直线的斜率为-$\frac{1}{2}$,所以切线的斜率为2,
则切线方程为:y+1=2(x-2)即2x-y-5=0.
故答案为:2x-y-5=0.

点评 此题考查学生掌握点与圆的位置关系及直线与圆的位置关系,掌握两直线垂直时斜率所满足的关系,会根据一点的坐标和直线的斜率写出直线的方程,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.将cos2x+sin2x化为Asin(x+θ)的形式,若函数f(x)=Asin(x+θ),则其值域为[-$\sqrt{2}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.圆的极坐标方程为ρ=2(cosθ+sinθ),则该圆的圆心极坐标是(  )
A.$({1,\frac{π}{4}})$B.$({\frac{1}{2},\frac{π}{4}})$C.$(\sqrt{2},\frac{π}{4})$D.$({2,\frac{π}{4}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.二项式${({\sqrt{x}-\frac{1}{{\sqrt{x}}}})^{12}}$展开式中,x3的系数是(  )
A.-495B.-220C.495D.220

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=3x-4x3(x∈[0,2])的最大值是(  )
A.1B.2C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设向量$\overrightarrow a,\vec b$满足$|\overrightarrow a|=|\vec b|=1,|2\overrightarrow a-\vec b|=2$,则$|\overrightarrow a+\vec b|$=$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=(2x-x2)ex,给以下四个结论:①f(x)>0的解集为{x|0<x<2};②$f({-\sqrt{2}})$是极小值,$f({\sqrt{2}})$是极大值;③f(x)有极小值,但无最小值;④f(x)有极小值,也有最小值.其中正确的是(  )
A.①②B.①②③C.①②④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若数列{an}满足a1=1,an+1=nan+1,则第5项a5=(  )
A.5B.65C.89D.206

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知m、n为空间两条不同直线,α、β、γ为不同的平面,则下列命题正确的是(  )
A.若α⊥β,a?α,则a⊥βB.若α⊥γ,β⊥γ,则α∥β
C.若α∥β,a?α,b?β,则a∥bD.若m⊥α,m∥n,n∥β,则α⊥β

查看答案和解析>>

同步练习册答案