精英家教网 > 高中数学 > 题目详情
7.已知右焦点为F2(c,0)的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(1,$\frac{3}{2}$),且椭圆C关于直线x=c对称的图形过坐标原点.则椭圆C的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

分析 由椭圆C过点(1,$\frac{3}{2}$)且椭圆C关于直线x=c对称的图形过坐标原点,求出a,b,c,即可求得椭圆C的方程.

解答 解:∵椭圆C过点(1,$\frac{3}{2}$),整理得:$\frac{1}{{a}^{2}}$+$\frac{9}{4{b}^{2}}$=1,①
∵椭圆C关于直线x=c对称的图形过坐标原点,∴a=2c,
∴$\frac{{b}^{2}}{{a}^{2}}$=$\frac{3}{4}$,②
由①②得a=2,b=$\sqrt{3}$,
∴椭圆C的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$,
故答案为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

点评 本题考查椭圆的标准方程及简单几何性质,考查分析问题及解决问题的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.如图是导函数y=f′(x)的图象,那么函数y=f(x)在区间[a,b]内极大值的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x2-2x-4lnx,则f'(x)>0的解集是(  )
A.(0,+∞)B.(1,+∞)C.(2,+∞)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=x2-6x+8,x∈[-5,5],在定义域内任取一点x0,使f(x0)≤0的概率是(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{3}{10}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\frac{1}{3}{x^3}-a{x^2}+bx$(a,b∈R),f′(0)=f′(2)=1.
(1)求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)若函数g(x)=f(x)-4x,x∈[-3,2],求g(x)的单调区间和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列命题的说法错误的是(  )
A.对于命题p:?x∈R,x2+x+1>0,则¬p:?x∈R,x2+x+1≤0
B.“x=1”是“x2-3x+2=0”的充分不必要条件
C.“sinθ=$\frac{1}{2}$”是“θ=30°”的充分不必要条件
D.命题“若x2-3x+2=0,则x=1”的逆否命题是“若x≠1,则x2-3x+2≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在正三棱柱ABC-A1B1C1中,A1A=2AB=2,平面α过定点A,平面α∥平面A1BC,面α∩平面ABC=m,面α∩平面A1C1C=n,则m,n所成角的余弦值为(  )
A.$\frac{{\sqrt{5}}}{10}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{3}{5}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若双曲线C:$\frac{{x}^{2}}{4}$-y2=1的左、右焦点分别为F1,F2,P为双曲线C上一点,满足$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$=0的点P依次记为P1、P2、P3、P4,则四边形P1P2P3P4的面积为(  )
A.$\frac{8\sqrt{5}}{5}$B.2$\sqrt{5}$C.$\frac{8\sqrt{6}}{5}$D.2$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=|x-t|,t∈R
(Ⅰ)若t=1,解不等式f(x)+f(x+1)≤2
(Ⅱ)若t=2,a<0,求证:f(ax)-f(2a)≥af(x)

查看答案和解析>>

同步练习册答案