精英家教网 > 高中数学 > 题目详情
2.已知函数$f(x)=\frac{1}{3}{x^3}-a{x^2}+bx$(a,b∈R),f′(0)=f′(2)=1.
(1)求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)若函数g(x)=f(x)-4x,x∈[-3,2],求g(x)的单调区间和最小值.

分析 (1)求出函数的导数,根据f′(0)=f′(2)=1,得到关于a,b的方程组,解出即可求出f(x)的解析式,从而求出切线方程即可;
(2)求出g(x)的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值即可.

解答 解:(1)因为f′(x)=x2-2ax+b,
由f′(0)=f′(2)=1即$\left\{\begin{array}{l}b=1\\ 4-4a+b=1\end{array}\right.$,得$\left\{\begin{array}{l}a=1\\ b=1\end{array}\right.$,
则f(x)的解析式为$f(x)=\frac{1}{3}{x^3}-{x^2}+x$,即有f(3)=3,f′(3)=4
所以所求切线方程为4x-y-9=0.
(2)由(1)f(x)=$\frac{1}{3}$x3-x2+x,
∴$g(x)=\frac{1}{3}{x^3}-{x^2}-3x$,∴g′(x)=x2-2x-3,
由g′(x)=x2-2x-3>0,得x<-1或x>3,
由g′(x)=x2-2x-3<0,得-1<x<3,
∵x∈[-3,2],
∴g(x)的单调增区间为[-3,-1],减区间为(-1,2],
∵$g(-3)=-9<g(2)=-\frac{22}{3}$,
∴g(x)的最小值为-9.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及求切线方程问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.某四棱锥的三视图如图所示,则该四棱锥的四个侧面的面积中最大值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列试验属于古典概型的有(  )
①从装有大小、形状完全相同的红、黑、绿各一球的袋子中任意取出一球,取出的球为红色的概率;
②在公交车站候车不超过10分钟的概率;
③同时抛掷两枚硬币,观察出现“两正”“两反”“一正一反”的次数;
④从一桶水中取出100mL,观察是否含有大肠杆菌.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点M(0,-2),N(0,2),动点P满足$|{PM}|-|{PN}|=2\sqrt{2}$.则动点P的轨迹方程为$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{2}$=1(y>0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.x>0是$\frac{1}{x}$-1>0成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知右焦点为F2(c,0)的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(1,$\frac{3}{2}$),且椭圆C关于直线x=c对称的图形过坐标原点.则椭圆C的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=plnx+(p-1)x2+1
(1)讨论函数f(x)的单调性;
(2)当p=1时,若对?x>0,f(x+1)+$\frac{a}{x+2}$>2恒成立,求实数a的取值范围;
(3)求证:$\frac{1}{3}$+$\frac{1}{5}$+$\frac{1}{7}$+…+$\frac{1}{2n+1}$<ln(n+1)(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知平面向量$\overrightarrow a,\overrightarrow b$满足$(2\overrightarrow a-\overrightarrow b)•\overrightarrow a=5$,且$|\overrightarrow a|=2,|\overrightarrow b|=3$,则向量$\overrightarrow a$与向量$\overrightarrow b$的夹角余弦值为(  )
A.1B.-1C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设x,y满足约束条件$\left\{\begin{array}{l}{x-y+3≥0}\\{x+y≥0}\\{x≤2}\end{array}\right.$,若目标函数z=kx+y的最大值为9,则实数k的值为-5或2.

查看答案和解析>>

同步练习册答案