精英家教网 > 高中数学 > 题目详情
10.已知点M(0,-2),N(0,2),动点P满足$|{PM}|-|{PN}|=2\sqrt{2}$.则动点P的轨迹方程为$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{2}$=1(y>0).

分析 由已知中点M(0,-2),N(0,2),动点P满足$|{PM}|-|{PN}|=2\sqrt{2}$.根据双曲线的定义,可得点点P的轨迹是以M,N为焦点的双曲线的上支,进而得到答案.

解答 解:依题意,点P的轨迹是以M,N为焦点的双曲线的上支,且c=2,a=$\sqrt{2}$,
∴b=$\sqrt{2}$,
∴所求方程为$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{2}$=1 (y>0)
故答案为$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{2}$=1 (y>0).

点评 本题考查的知识点是轨迹方程,其中熟练掌握双曲线的定义是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知扇形的半径为1cm,圆心角为30°,则该扇形的面积为$\frac{π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设f(x)=$\frac{ex}{1+a{x}^{2}}$,其中a为正实数.
(1)若x=$\frac{1}{3}$是f(x)的一个极值点,求a的值
(2当a=$\frac{4}{3}$时,求f(x)的极值点;
(3)若f(x)为R上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x2-2x-4lnx,则f'(x)>0的解集是(  )
A.(0,+∞)B.(1,+∞)C.(2,+∞)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx-ax.
(Ⅰ)若函数f(x)在x=1处的切线与x轴平行,求a的值;
(Ⅱ)若a=2,求函数f(x)在x=1处的切线方程;
(Ⅲ)若a=1,请列出表格求函数f(x)的极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=x2-6x+8,x∈[-5,5],在定义域内任取一点x0,使f(x0)≤0的概率是(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{3}{10}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\frac{1}{3}{x^3}-a{x^2}+bx$(a,b∈R),f′(0)=f′(2)=1.
(1)求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)若函数g(x)=f(x)-4x,x∈[-3,2],求g(x)的单调区间和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在正三棱柱ABC-A1B1C1中,A1A=2AB=2,平面α过定点A,平面α∥平面A1BC,面α∩平面ABC=m,面α∩平面A1C1C=n,则m,n所成角的余弦值为(  )
A.$\frac{{\sqrt{5}}}{10}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{3}{5}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数y=f(x)在实数集R上的图象是连续不断的,且对任意实数x存在常数t使得f(x+t)=tf(x)恒成立,则称y=f(x)是一个“关于t的函数”,现有下列“关于t函数”的结论:
①常数函数是“关于t函数”;
②正比例函数必是一个“关于t函数”;
③“关于2函数”至少有一个零点;
④f(x)=${(\frac{1}{2})}^{x}$是一个“关于t函数”.
其中正确结论的序号是①④.

查看答案和解析>>

同步练习册答案