精英家教网 > 高中数学 > 题目详情
15.函数f(x)=x2-6x+8,x∈[-5,5],在定义域内任取一点x0,使f(x0)≤0的概率是(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{3}{10}$D.$\frac{4}{5}$

分析 首先求出f(x0)≤0的x0的范围,利用区间长度的比求概率.

解答 解:函数f(x)=x2-6x+8=(x-2)(x-4),x∈[-5,5],
在定义域内任取一点x0,使f(x0)≤0的x0的范围是[2,4],
由几何概型的公式得到使f(x0)≤0的概率是$\frac{4-2}{5+5}$=$\frac{1}{5}$.
故选:B.

点评 本题考查了几何概型的概率问题;关键是明确几何测度,利用几何概型的公式解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数$y=sin\frac{x}{2}+\sqrt{3}cos\frac{x}{2},x∈R$.的最大值为(  )
A.1+$\sqrt{3}$B.2C.1D.$\sqrt{3}+\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.($\sqrt{2}$x-1)5的展开式中第3项的系数是(  )
A.-20$\sqrt{2}$B.20C.-20D.20$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.若B=90°,且$a=\sqrt{3}$,则△ABC的面积为(  )
A.1B.$\frac{3}{2}$C.$\frac{{\sqrt{3}}}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点M(0,-2),N(0,2),动点P满足$|{PM}|-|{PN}|=2\sqrt{2}$.则动点P的轨迹方程为$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{2}$=1(y>0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求经过点M(0,-3),且与圆C:x2+y2+2x-6y+5=0相切于点N(0,1)的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知右焦点为F2(c,0)的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(1,$\frac{3}{2}$),且椭圆C关于直线x=c对称的图形过坐标原点.则椭圆C的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.二项式(6x-$\frac{1}{\sqrt{x}}$)15的展开式中的常数项是第几项(  )
A.10B.11C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(3x)=x+2,若f(a)=1,则a=$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案