分析 先利用待定系数法假设圆的标准方程:(x-a)2+(y-b)2=r2,求出已知圆的圆心坐标与半径,再根据条件圆C过点M(0,-3),且与圆C:x2+y2+2x-6y+5=0相切于点N(0,1),列出方程组可求相应参数,从而可求方程.
解答 解:设所求圆方程:(x-a)2+(y-b)2=r2
已知圆的圆心:(-1,3),半径=$\sqrt{5}$,
由题意可得:(-a)2+(-3-b)2=r2,(a-0)2+(b-1)2=r2,(a+1)2+(b-3)2=($\sqrt{5}$+r)2,
解得a=1,b=-1,r=$\sqrt{5}$,
所求圆:(x-1)2+(y+1)2=5
点评 本题的考点是圆的标准方程,主要考查利用待定系数法求圆的标准方程,考查学生分析解决问题的能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({\frac{1}{2},2})$ | B. | $({\frac{1}{2},1})∪({1,2})$ | C. | (1,2) | D. | $({\frac{1}{2},∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{10}$ | B. | $\frac{1}{5}$ | C. | $\frac{3}{10}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 合情推理法 | B. | 综合法 | C. | 间接证法 | D. | 分析法 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 对于命题p:?x∈R,x2+x+1>0,则¬p:?x∈R,x2+x+1≤0 | |
| B. | “x=1”是“x2-3x+2=0”的充分不必要条件 | |
| C. | “sinθ=$\frac{1}{2}$”是“θ=30°”的充分不必要条件 | |
| D. | 命题“若x2-3x+2=0,则x=1”的逆否命题是“若x≠1,则x2-3x+2≠0” |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com