·ÖÎö £¨¢ñ£©ÓÉÌâÒâ¿ÉµÃA£¬BµÄ×ø±ê£¬Éè³öPµÄ×ø±ê£¬ÓÉPÔÚÍÖÔ²Éϼ°AP£¬BP µÄбÂʳ˻ýΪ$-\frac{1}{2}$ÁÐʽÇóµÃÍÖÔ²µÄÀëÐÄÂÊ£»
£¨¢ò£©ÓÉÌâÒâM£¨a£¬2$\sqrt{6}$£©£¬Çó³ö|AM|£¬Çó³öAMËùÔÚÖ±ÏßµÄбÂÊ£¬µÃµ½Ö±Ïß·½³Ì£¬ÓëÍÖÔ²·½³ÌÁªÁ¢£¬Çó³öPµÄºá×ø±ê£¬½øÒ»²½µÃµ½|AP|£¬ÓÉAM=4AP¿ÉµÃb£¬½áºÏ£¨¢ñ£©ÇóµÃa£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨¢ó£©ÉèAPбÂÊΪk£¬ÔòAP·½³ÌΪy=k£¨x+2£©£¬ÓÉa=2£¬µÃµ½MµÄ×ø±ê£¬ÓÉAP£¬BP µÄбÂʳ˻ýΪ$-\frac{1}{2}$£¬¿ÉµÃÖ±ÏßBPµÄбÂÊΪ$-\frac{1}{2k}$£¬¹ýM´¹Ö±ÓÚBPµÄÖ±ÏßlµÄбÂÊΪ2k£¬Ö±Ïß·½³ÌΪy-4k=2k£¨x-2£©£¬ÓÉ´Ë˵Ã÷Ö±Ïߺã¹ý×ø±êÔµãO£¨0£¬0£©£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒ⣬µÃ£ºA£¨-a£¬0£©£¬B£¨a£¬0£©£¬ÉèP£¨x0£¬y0£©£¬
ÓɵãPΪÍÖÔ²CÉÏÒ»µã¿ÉµÃ${{y}_{0}}^{2}=\frac{{a}^{2}-{{x}_{0}}^{2}}{{a}^{2}}•{b}^{2}$£¬¢Ù
¡ßÖ±ÏßPAÓëPBµÄбÂʳ˻ýÊÇ-$\frac{1}{2}$£¬¡à$\frac{{{y}_{0}}^{2}}{{{x}_{0}}^{2}-{a}^{2}}=-\frac{1}{2}$£¬¢Ú
ÁªÁ¢¢Ù¢ÚµÃ£º$\frac{{b}^{2}}{{a}^{2}}=\frac{1}{2}$£¬¡à$\frac{{a}^{2}-{c}^{2}}{{a}^{2}}=\frac{1}{2}$£¬µÃ$\frac{{c}^{2}}{{a}^{2}}=\frac{1}{2}$£¬
¡àe=$\frac{c}{a}=\frac{\sqrt{2}}{2}$£»
£¨¢ò£©ÓÉÌâÒâM£¨a£¬2$\sqrt{6}$£©£¬|AM|=$\sqrt{4{a}^{2}+24}$£¬${k}_{AM}=\frac{2\sqrt{6}}{2a}=\frac{\sqrt{6}}{a}$£¬
AMËùÔÚÖ±Ïß·½³ÌΪ£ºy=$\frac{\sqrt{6}}{a}£¨x+a£©$£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=\frac{\sqrt{6}}{a}£¨x+a£©}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$£¬ÏûÈ¥yµÃ£º£¨b2+6£©x2+12ax+6a2-a2b2=0£®
¡à-a${x}_{P}=\frac{{a}^{2}£¨6-{b}^{2}£©}{{b}^{2}+6}$£¬µÃ${x}_{P}=-\frac{a£¨6-{b}^{2}£©}{6+{b}^{2}}$£¬
¡à|AP|=$\frac{a|6-{b}^{2}|}{6+{b}^{2}}•\frac{\sqrt{4{a}^{2}+24}}{2a}=\frac{|6-{b}^{2}|\sqrt{{a}^{2}+6}}{6+{b}^{2}}$£¬
ÓÉAM=4AP£¬µÃ$\sqrt{4{a}^{2}+24}=4\frac{|6-{b}^{2}|\sqrt{{a}^{2}+6}}{6+{b}^{2}}$£¬¼´6+b2=2|6-b2|£¬
½âµÃ£ºb2=2»òb2=12£®
ÓÉ£¨¢ñ£©Öª£¬a2=2b2£¬¡àa2=4»òa2=24£®
¡àÌâÒâ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$»ò$\frac{{x}^{2}}{24}+\frac{{y}^{2}}{12}=1$£»
£¨¢ó£©Èôa=2£¬ÓÉ£¨¢ñ£©µÃ£¬b2=2£¬ÔòÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$£¬
ÉèAPбÂÊΪk£¬ÔòAP·½³ÌΪy=k£¨x+2£©£¬ÁªÁ¢$\left\{\begin{array}{l}{x=2}\\{y=k£¨x+2£©}\end{array}\right.$£¬µÃM£¨2£¬4k£©£¬
Ö±ÏßBPµÄбÂÊΪ$-\frac{1}{2k}$£¬¹ýM´¹Ö±ÓÚBPµÄÖ±ÏßlµÄбÂÊΪ2k£¬Ö±Ïß·½³ÌΪy-4k=2k£¨x-2£©£¬
¼´y=2kx£¬Ö±Ïߺã¹ý×ø±êÔµãO£¨0£¬0£©£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÁËÖ±ÏßÓëÍÖԲλÖùØÏµµÄÓ¦Ó㬿¼²éÊýÐνáºÏµÄ½âÌâ˼Ïë·½·¨ÓëÊýѧת»¯Ë¼Ïë·½·¨£¬ÊÇÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2 | B£® | 3 | C£® | 4 | D£® | 8 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | $\frac{6}{5}$ | C£® | $\frac{3}{2}$ | D£® | 2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{{\sqrt{5}}}{5}$ | B£® | $\frac{{2\sqrt{5}}}{5}$ | C£® | $\frac{{4\sqrt{5}}}{5}$ | D£® | 2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ³ä·Ö±ØÒª | B£® | ³ä·Ö·Ç±ØÒª | ||
| C£® | ±ØÒª·Ç³ä·Ö | D£® | ¼È²»³ä·ÖÒ²²»±ØÒª |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $[-1£¬\frac{1}{3}£©$ | B£® | $[0£¬\frac{1}{3}]$ | C£® | [3£¬+¡Þ£© | D£® | £¨-1£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com