1£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$£¬A£¬B ΪÆä×óÓÒ¶¥µã£¬PÊÇÍÖÔ²ÉÏÒìÓÚA£¬BÒ»µã£¬Ö±ÏßAPÓëÖ±Ïßx=a½»ÓÚµãM£¬AP£¬BP µÄбÂʳ˻ýΪ$-\frac{1}{2}$£®
£¨¢ñ£©ÇóÍÖÔ²µÄÀëÐÄÂÊ£»
£¨¢ò£©µ±µãM×Ý×ø±êΪ$2\sqrt{6}$ʱ£¬AM=4AP£¬ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ó£©Èôa=2£¬¹ýM×÷Ö±ÏßBPµÄ´¹Ïßl£¬ÎÊÖ±ÏßlÊÇ·ñºã¹ý¶¨µã£¿Èô¹ý¶¨µã£¬Çó³ö¶¨µã×ø±ê£»Èô²»¹ý¶¨µã£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÓÉÌâÒâ¿ÉµÃA£¬BµÄ×ø±ê£¬Éè³öPµÄ×ø±ê£¬ÓÉPÔÚÍÖÔ²Éϼ°AP£¬BP µÄбÂʳ˻ýΪ$-\frac{1}{2}$ÁÐʽÇóµÃÍÖÔ²µÄÀëÐÄÂÊ£»
£¨¢ò£©ÓÉÌâÒâM£¨a£¬2$\sqrt{6}$£©£¬Çó³ö|AM|£¬Çó³öAMËùÔÚÖ±ÏßµÄбÂÊ£¬µÃµ½Ö±Ïß·½³Ì£¬ÓëÍÖÔ²·½³ÌÁªÁ¢£¬Çó³öPµÄºá×ø±ê£¬½øÒ»²½µÃµ½|AP|£¬ÓÉAM=4AP¿ÉµÃb£¬½áºÏ£¨¢ñ£©ÇóµÃa£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£»
£¨¢ó£©ÉèAPбÂÊΪk£¬ÔòAP·½³ÌΪy=k£¨x+2£©£¬ÓÉa=2£¬µÃµ½MµÄ×ø±ê£¬ÓÉAP£¬BP µÄбÂʳ˻ýΪ$-\frac{1}{2}$£¬¿ÉµÃÖ±ÏßBPµÄбÂÊΪ$-\frac{1}{2k}$£¬¹ýM´¹Ö±ÓÚBPµÄÖ±ÏßlµÄбÂÊΪ2k£¬Ö±Ïß·½³ÌΪy-4k=2k£¨x-2£©£¬ÓÉ´Ë˵Ã÷Ö±Ïߺã¹ý×ø±êÔ­µãO£¨0£¬0£©£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒ⣬µÃ£ºA£¨-a£¬0£©£¬B£¨a£¬0£©£¬ÉèP£¨x0£¬y0£©£¬
ÓɵãPΪÍÖÔ²CÉÏÒ»µã¿ÉµÃ${{y}_{0}}^{2}=\frac{{a}^{2}-{{x}_{0}}^{2}}{{a}^{2}}•{b}^{2}$£¬¢Ù
¡ßÖ±ÏßPAÓëPBµÄбÂʳ˻ýÊÇ-$\frac{1}{2}$£¬¡à$\frac{{{y}_{0}}^{2}}{{{x}_{0}}^{2}-{a}^{2}}=-\frac{1}{2}$£¬¢Ú
ÁªÁ¢¢Ù¢ÚµÃ£º$\frac{{b}^{2}}{{a}^{2}}=\frac{1}{2}$£¬¡à$\frac{{a}^{2}-{c}^{2}}{{a}^{2}}=\frac{1}{2}$£¬µÃ$\frac{{c}^{2}}{{a}^{2}}=\frac{1}{2}$£¬
¡àe=$\frac{c}{a}=\frac{\sqrt{2}}{2}$£»
£¨¢ò£©ÓÉÌâÒâM£¨a£¬2$\sqrt{6}$£©£¬|AM|=$\sqrt{4{a}^{2}+24}$£¬${k}_{AM}=\frac{2\sqrt{6}}{2a}=\frac{\sqrt{6}}{a}$£¬
AMËùÔÚÖ±Ïß·½³ÌΪ£ºy=$\frac{\sqrt{6}}{a}£¨x+a£©$£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=\frac{\sqrt{6}}{a}£¨x+a£©}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$£¬ÏûÈ¥yµÃ£º£¨b2+6£©x2+12ax+6a2-a2b2=0£®
¡à-a${x}_{P}=\frac{{a}^{2}£¨6-{b}^{2}£©}{{b}^{2}+6}$£¬µÃ${x}_{P}=-\frac{a£¨6-{b}^{2}£©}{6+{b}^{2}}$£¬
¡à|AP|=$\frac{a|6-{b}^{2}|}{6+{b}^{2}}•\frac{\sqrt{4{a}^{2}+24}}{2a}=\frac{|6-{b}^{2}|\sqrt{{a}^{2}+6}}{6+{b}^{2}}$£¬
ÓÉAM=4AP£¬µÃ$\sqrt{4{a}^{2}+24}=4\frac{|6-{b}^{2}|\sqrt{{a}^{2}+6}}{6+{b}^{2}}$£¬¼´6+b2=2|6-b2|£¬
½âµÃ£ºb2=2»òb2=12£®
ÓÉ£¨¢ñ£©Öª£¬a2=2b2£¬¡àa2=4»òa2=24£®
¡àÌâÒâ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$»ò$\frac{{x}^{2}}{24}+\frac{{y}^{2}}{12}=1$£»
£¨¢ó£©Èôa=2£¬ÓÉ£¨¢ñ£©µÃ£¬b2=2£¬ÔòÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$£¬
ÉèAPбÂÊΪk£¬ÔòAP·½³ÌΪy=k£¨x+2£©£¬ÁªÁ¢$\left\{\begin{array}{l}{x=2}\\{y=k£¨x+2£©}\end{array}\right.$£¬µÃM£¨2£¬4k£©£¬
Ö±ÏßBPµÄбÂÊΪ$-\frac{1}{2k}$£¬¹ýM´¹Ö±ÓÚBPµÄÖ±ÏßlµÄбÂÊΪ2k£¬Ö±Ïß·½³ÌΪy-4k=2k£¨x-2£©£¬
¼´y=2kx£¬Ö±Ïߺã¹ý×ø±êÔ­µãO£¨0£¬0£©£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÁËÖ±ÏßÓëÍÖԲλÖùØÏµµÄÓ¦Ó㬿¼²éÊýÐνáºÏµÄ½âÌâ˼Ïë·½·¨ÓëÊýѧת»¯Ë¼Ïë·½·¨£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÔÚÕýÏîµÈ±ÈÊýÁÐ{an}ÖУ¬a5a4a2a1=16£¬Ôòa1+a5µÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®2B£®3C£®4D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{2}$x2-alnx£¨a£¾0£©£®
£¨¢ñ£© Èôa=1£¬Çóf£¨x£©µ¥µ÷Çø¼äºÍ¼«Öµ£»
£¨¢ò£© Èôf£¨x£©ÔÚÇø¼ä£¨1£¬e£©ÉÏÇ¡ÓÐÁ½¸öÁãµã£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èç¹ûʵÊýx£¬yÂú×ãÌõ¼þ$\left\{\begin{array}{l}{2x-y¡Ý0}\\{x+2y-2¡Ý0}\\{x-1¡Ü0}\end{array}\right.$£¬Ôòz=x+yµÄ×îСֵΪ£¨¡¡¡¡£©
A£®1B£®$\frac{6}{5}$C£®$\frac{3}{2}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Å×ÎïÏßy2=4xµÄ½¹µãµ½Ë«ÇúÏß$\frac{x^2}{2}-\frac{y^2}{8}=1$µÄ½¥½üÏߵľàÀëΪ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{5}}}{5}$B£®$\frac{{2\sqrt{5}}}{5}$C£®$\frac{{4\sqrt{5}}}{5}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®¹ØÓÚxµÄ·½³Ìx2-£¨m+2£©x+1=0ÓÐÁ½¸öÕý¸ù£¬ÔòmµÄȡֵ·¶Î§Îª{m|m¡Ý0}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®¹Û²ìÏÂÁеÈʽ£¬Õմ˹æÂÉ£¬µÚÎå¸öµÈʽӦΪ5+6+7+8+9+10+11+12+13=81£®
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªf£¨x£©=x3+log2£¨x+$\sqrt{{x}^{2}+1}$£©£¬Ôò¶ÔÈÎÒâʵÊýa£¬b¶øÑÔ£¬ÃüÌâ¡°a+b£¾0¡±ÊÇÃüÌâ¡°f£¨a£©+f£¨b£©¡Ý0¡±µÄ£¨¡¡¡¡£©Ìõ¼þ£®
A£®³ä·Ö±ØÒªB£®³ä·Ö·Ç±ØÒª
C£®±ØÒª·Ç³ä·ÖD£®¼È²»³ä·ÖÒ²²»±ØÒª

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=log2£¨ax2+2x+3£©£¬Èô¶ÔÓÚÈÎÒâʵÊýk£¬×Ü´æÔÚʵÊýx0£¬Ê¹µÃf£¨x0£©=k³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$[-1£¬\frac{1}{3}£©$B£®$[0£¬\frac{1}{3}]$C£®[3£¬+¡Þ£©D£®£¨-1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸