【题目】已知椭圆
,离心率为
,直线
恒过
的一个焦点
.
(1)求
的标准方程;
(2)设
为坐标原点,四边形
的顶点均在
上,
交于
,且
,若直线
的倾斜角的余弦值为
,求直线
与
轴交点的坐标.
【答案】(1)
(2)![]()
【解析】
(1)将
转化成直线点斜式方程形式,求出所过的恒点,进而知道椭圆的焦点,再根据椭圆的离心率公式进行求解即可.
(2)根据向量等式,可以确定
分别是
的中点.设
,求出直线
的方程,与椭圆方程联立,消元,利用一元二次方程根与系数关系,求出
的坐标,同理求出
点坐标,求出直线
的方程,最后求出直线
与
轴交点的坐标.
(1)设椭圆的半焦距为
,
可化为
,所以直线
恒过点
,所以点
,可得
.因为离心率为
,所以
,解得
,由
得
,所以
的标准方程为
.
(2)因为
,所以
.由
得
分别是
的中点.设
.由直线
的倾斜角的余弦值为
,得直线
的斜率为2,所以
,联立
消去
,得
.显然,
,且
,
,所以
,可得
,同理可得
,所以
,所以
.令
,得
,所以直线
与
轴交点的坐标为
.
科目:高中数学 来源: 题型:
【题目】某次考试后,对全班同学的数学成绩进行整理,得到表:
分数段 |
|
|
|
|
人数 | 5 | 15 | 20 | 10 |
将以上数据绘制成频率分布直方图后,可估计出本次考试成绩的中位数是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)如图,在直角坐标系
中,角
的顶点是原点,始边与
轴正半轴重合.终边交单位圆于点
,且
,将角
的终边按逆时针方向旋转
,交单位圆于点
,记
.
![]()
(1)若
,求
;
(2)分别过
作
轴的垂线,垂足依次为
,记
的面积为
,
的面积为
,若
,求角
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某快递公司收取快递费用的标准是:重量不超过
的包裹收费
元;重量超过
的包裹,除
收费
元之外,超过
的部分,每超出
(不足
,按
计算)需再收
元.该公司将最近承揽的
件包裹的重量统计如下:
包裹重量(单位: |
|
|
|
|
|
包裹件数 |
|
|
|
|
|
公司对近
天,每天揽件数量统计如下表:
包裹件数范围 |
|
|
|
|
|
包裹件数 (近似处理) |
|
|
|
|
|
天数 |
|
|
|
|
|
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来
天内恰有
天揽件数在
之间的概率;
(2)(i)估计该公司对每件包裹收取的快递费的平均值;
(ii)公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员
人,每人每天揽件不超过
件,工资
元.公司正在考虑是否将前台工作人员裁减
人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义在
上的函数
,若函数
满足:①在区间
上单调递减;②存在常数p,使其值域为
,则称函数
为
的“渐近函数”;
(1)证明:函数
是函数![]()
的渐近函数,并求此时实数p的值;
(2)若函数![]()
![]()
,证明:当
时,
不是
的渐近函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数且
)曲线
的参数方程为
(
为参数,且
),以
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为:
,曲线
的极坐标方程为
.
(1)求
与
的交点到极点的距离;
(2)设
与
交于
点,
与
交于
点,当
在
上变化时,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业打算处理一批产品,这些产品每箱100件,以箱为单位销售.已知这批产品中每箱出现的废品率只有
或者
两种可能,两种可能对应的概率均为0.5.假设该产品正品每件市场价格为100元,废品不值钱.现处理价格为每箱8400元,遇到废品不予更换.以一箱产品中正品的价格期望值作为决策依据.
(1)在不开箱检验的情况下,判断是否可以购买;
(2)现允许开箱,有放回地随机从一箱中抽取2件产品进行检验.
①若此箱出现的废品率为
,记抽到的废品数为
,求
的分布列和数学期望;
②若已发现在抽取检验的2件产品中,其中恰有一件是废品,判断是否可以购买.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com