精英家教网 > 高中数学 > 题目详情
9.设U=R,A={-2,-1,0,1,2},B={x|x≥1},则A∩∁UB=(  )
A.{1,2}B.{-1,0,1}C.{-2,-1,0}D.{-2,-1,0,1}

分析 根据补集与交集的定义,写出∁UB与A∩∁UB即可.

解答 解:因为全集U=R,集合B={x|x≥1},
所以∁UB={x|x<1}=(-∞,1),
且集合A={-2,-1,0,1,2},
所以A∩∁UB={-2,-1,0}
故选:C

点评 本题考查了集合的定义与计算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知点M(0,$\sqrt{15}$)及抛物线y2=4x上一动点N(x,y),则x+|MN|的最小值为(  )
A.$\sqrt{5}$B.$2\sqrt{3}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}的前n项和为Sn,an+an+1=n•(-1)${\;}^{\frac{n(n+1)}{2}}$,S2017=1008,则a2的值为1007.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.交强险是车主必须为机动车购买的险种.若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:
 交强险浮动因素和浮动费率比率表
  浮动因素浮动比率 
 A1 上一个年度未发生有责任道路交通事故 下浮10%
 A2 上两个年度未发生有责任道路交通事故 下浮20%
 A3 上三个及以上年度未发生有责任道路交通事故 下浮30%
 A4 上一个年度发生一次有责任不涉及死亡的道路交通事故 0%
 A5 上一个年度发生两次及两次以上有责任道路交通事故 上浮10%
 A6 上一个年度发生有责任道路交通死亡事故 上浮30%
某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
 类型 A1 A2 A3 A4 A5 A6
 数量10 20 15 
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(Ⅰ)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定a=950.记X为某同学家的一辆该品牌车在第四年续保时的费用,求X的分布列与数学期望值;(数学期望值保留到个位数字)
(Ⅱ)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{-\frac{1}{x},x<0}\\{\frac{x}{{x}^{2}+1},x≥0}\end{array}\right.$,若函数g(x)=f(x)-t有三个不同的零点x1,x2,x3,且x1<x2<x3,则-$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$+$\frac{1}{{x}_{3}}$的取值范围是($\frac{5}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,过点F1且垂直于x轴的直线与该双曲线的左支交于A、B两点,AF2、BF2分别交y轴于P、Q两点,若△PQF2的周长为12,则ab取得最大值时双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知z=$\frac{1-3i}{3+i}$(i为虚数单位),则z的共轭复数的虚部为(  )
A.-iB.iC.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设样本数据x1,x2,…,x2017的方差是4,若yi=2xi-1(i=1,2,…,2017),则y1,y2,…y2017的方差为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如表所示:
积极参加班级工作不太主动参加班级工作合计
学习积极性高18725
学习积极性一般61925
合计242650
(Ⅰ)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(Ⅱ)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关?并说明理由.
参考公式与临界值表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
p(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828

查看答案和解析>>

同步练习册答案