精英家教网 > 高中数学 > 题目详情
17.交强险是车主必须为机动车购买的险种.若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:
 交强险浮动因素和浮动费率比率表
  浮动因素浮动比率 
 A1 上一个年度未发生有责任道路交通事故 下浮10%
 A2 上两个年度未发生有责任道路交通事故 下浮20%
 A3 上三个及以上年度未发生有责任道路交通事故 下浮30%
 A4 上一个年度发生一次有责任不涉及死亡的道路交通事故 0%
 A5 上一个年度发生两次及两次以上有责任道路交通事故 上浮10%
 A6 上一个年度发生有责任道路交通死亡事故 上浮30%
某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
 类型 A1 A2 A3 A4 A5 A6
 数量10 20 15 
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(Ⅰ)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定a=950.记X为某同学家的一辆该品牌车在第四年续保时的费用,求X的分布列与数学期望值;(数学期望值保留到个位数字)
(Ⅱ)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.

分析 (Ⅰ)由题意可知X的可能取值为0.9a,0.8a,0.7a,a,1.1a,1.3a.由统计数据可知其概率及其分布列.
(II)①由统计数据可知任意一辆该品牌车龄已满三年的二手车为事故车的概率为$\frac{1}{3}$,三辆车中至多有一辆事故车的概率为P=$(1-\frac{1}{3})^{3}$+${∁}_{3}^{1}×\frac{1}{3}×(\frac{2}{3})^{2}$.
②设Y为该销售商购进并销售一辆二手车的利润,Y的可能取值为-5000,10000.即可得出分布列与数学期望.

解答 解:(Ⅰ)由题意可知X的可能取值为0.9a,0.8a,0.7a,a,1.1a,1.3a.…(2分)
由统计数据可知:
P(X=0.9a)=$\frac{1}{6}$,P(X=0.8a)=$\frac{1}{12}$,P(X=0.7a)=$\frac{1}{12}$,P(X=a)=$\frac{1}{3}$,P(X=1.1a)=$\frac{1}{4}$,
P(X=1.3a)=$\frac{1}{12}$.
所以X的分布列为:

X0.9a0.8a0.7aa1.1a1.3a
P$\frac{1}{6}$$\frac{1}{12}$$\frac{1}{12}$$\frac{1}{3}$$\frac{1}{4}$$\frac{1}{12}$
…(4分)
所以EX=0.9a×$\frac{1}{6}$+0.8a×$\frac{1}{12}$+0.7a×$\frac{1}{12}$+a×$\frac{1}{3}$+1.1a×$\frac{1}{4}$+1.3a×$\frac{1}{12}$=$\frac{11.9a}{12}$=$\frac{11305}{12}$≈942.(5分)
(Ⅱ) ①由统计数据可知任意一辆该品牌车龄已满三年的二手车为事故车的概率为$\frac{1}{3}$,三辆车中至多有一辆事故车的概率为P=$(1-\frac{1}{3})^{3}$+${∁}_{3}^{1}×\frac{1}{3}×(\frac{2}{3})^{2}$=$\frac{20}{27}$.…(8分)
②设Y为该销售商购进并销售一辆二手车的利润,Y的可能取值为-5000,10000.
所以Y的分布列为:
Y-500010000
P$\frac{1}{3}$$\frac{2}{3}$
所以EY=-5000×$\frac{1}{3}$+10000×$\frac{2}{3}$=5000.…(10分)
所以该销售商一次购进100辆该品牌车龄已满三年的二手车获得利润的期望值为100EY=50万元.…(12分)

点评 本题考查了随机变量的分布列与数学期望、相互独立与互斥事件的概率计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.定义在 R 上的奇函数 f (x) 满足 f (2+x )=f (2-x),且 f (1)=1,则 f (2017)=(  )
A.0B.1C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系中xOy中,已知曲线E经过点P(1,$\frac{2\sqrt{3}}{3}$),其参数方程为$\left\{\begin{array}{l}{x=acosα}\\{y=\sqrt{2}sinα}\end{array}\right.$(α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线E的极坐标方程;
(2)若直线l交E于点A、B,且OA⊥OB,求证:$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如果两组数a1,a2,…an和b1,b2,…bn的平均数分别是a和b,那么一组数a1+3b1,a2+3b2,…,an+3bn的平均数是a+3b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设U=R,A={-3,-2,-1,0,1,2},B={x|x≥1},则A∩∁UB=(  )
A.{1,2}B.{-1,0,1,2}C.{-3,-2,-1,0}D.{2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有42株树木的底部周长小于110cm.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设U=R,A={-2,-1,0,1,2},B={x|x≥1},则A∩∁UB=(  )
A.{1,2}B.{-1,0,1}C.{-2,-1,0}D.{-2,-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,D为BC边上一点,且满足$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),BC=10,AD=12,且$\overrightarrow{AD}$•$\overrightarrow{BC}$=0,则$\overrightarrow{AD}$•$\overrightarrow{AC}$=(  )
A.144B.100C.169D.60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=2$\sqrt{3}$,∠BAC=30°,且2$\overrightarrow{AC}$+3$\overrightarrow{DC}$=5$\overrightarrow{BC}$,则$\overrightarrow{AC}$•$\overrightarrow{CD}$等于(  )
A.-2B.3C.4D.-5

查看答案和解析>>

同步练习册答案