精英家教网 > 高中数学 > 题目详情
4.已知实数x,y满足$\left\{\begin{array}{l}{3x+2y-12≤0}\\{x≥2}\\{y≥\frac{3}{2}}\end{array}\right.$,则$\frac{xy}{{x}^{2}{+y}^{2}}$的取值范围是(  )
A.[2,$\frac{5}{2}$]B.[$\frac{1}{2}$,$\frac{3}{2}$]C.(0,$\frac{1}{2}$]D.[$\frac{2}{5}$,$\frac{1}{2}$]

分析 画出约束条件的可行域,求出$\frac{y}{x}$的范围,化简目标函数,转化为函数的值域,求解即可.

解答 解:实数x,y满足$\left\{\begin{array}{l}{3x+2y-12≤0}\\{x≥2}\\{y≥\frac{3}{2}}\end{array}\right.$的可行域如图:

由图形可知:$\frac{y}{x}$的最小值:KOB,最大值是KOA,由$\left\{\begin{array}{l}{x=2}\\{3x+2y-12=0}\end{array}\right.$解得A(2,3),由$\left\{\begin{array}{l}{y=\frac{3}{2}}\\{3x+2y-12=0}\end{array}\right.$可得B(3,$\frac{3}{2}$),KOB=$\frac{1}{2}$,KOA=$\frac{3}{2}$,
则$\frac{xy}{{x}^{2}{+y}^{2}}$=$\frac{1}{\frac{x}{y}+\frac{y}{x}}$,令t=$\frac{y}{x}$,t∈$[\frac{1}{2},\frac{3}{2}]$,g(t)=$\frac{1}{t}$+t≥2,等号成立的条件是t=1,1∈[$\frac{1}{2}$,$\frac{3}{2}$],当t=$\frac{1}{2}$时,g($\frac{1}{2}$)=$\frac{5}{2}$,当t=$\frac{3}{2}$时,g($\frac{3}{2}$)=$\frac{13}{6}$,
可得$\frac{xy}{{x}^{2}{+y}^{2}}$=$\frac{1}{\frac{x}{y}+\frac{y}{x}}$∈[$\frac{2}{5}$,$\frac{1}{2}$].
故选:D.

点评 本题考查线性规划的简单应用,考查数形结合以及转化思想的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0).若f(x)在区间[$\frac{π}{4}$,$\frac{3π}{4}$]上具有单调性,且f($\frac{3π}{4}$)=f($\frac{11π}{12}$)=-f($\frac{π}{4}$).则f(x)的最小正周期为$\frac{4π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.
地区ABC
数量10050150
(1)求这6件样品中来自A,B,C各地区商品的数量;
(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤.斩末一尺,重二斤.问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细.在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由粗到细是均匀变化的,其重量为M,现将该金杖截成长度相等的10段,记第i段的重量为ai(i=1,2,…,10),且a1<a2<…<a10,若48ai=5M,则i=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.复数z满足1+i=$\frac{1-3i}{2z}$(其中i为虚数单位),则z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.(1+x)(1+$\sqrt{x}$)5的展开式中x2项的系数是15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{{e}^{x}}$,g(x)=lnx,其中e为自然对数的底数.
(1)求函数y=f(x)g(x)在x=1处的切线方程;
(2)若存在x1,x2(x1≠x2),使得g(x1)-g(x2)=λ[f(x2)-f(x1)]成立,其中λ为常数,求证:λ>e;
(3)若对任意的x∈(0,1],不等式f(x)g(x)≤a(x-1)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{nan}的前n项和为Sn,且an=2n,则使得Sn-nan+1+50<0的最小正整数n的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知曲线f(x)=$\frac{1}{3}$ax3-blnx在x=1处的切线方程为y=-2x+$\frac{8}{3}$
(Ⅰ)求f(x)的极值;
(Ⅱ)证明:x>0时,$\frac{xf(x)}{4}$$+\frac{x}{{e}^{x}}$<$\frac{{x}^{4}}{6}$$+\frac{2}{e}$(e为自然对数的底数)

查看答案和解析>>

同步练习册答案