分析 (1)利用等差数列与等比数列的通项公式即可得出.
(2)对λ分类讨论,利用等比数列的前n项和公式即可得出.
解答 解:(1)设各项均为正数的等差数列{an}的公差为d>0,∵a1=1,a4+2是a4-1和a9+3的等比中项,
∴$({a}_{4}+2)^{2}$=(a4-1)(a9+3),
∴(3+3d)2=3d×(4+8d),
解得d=1.
∴an=1+(n-1)=n.
(2)数列{bn}满足bn=λn•2${\;}^{{a}_{n}}$=λn•2n=(2λ)n.
$λ=\frac{1}{2}$时,bn=1,数列{bn}的前n项和Sn=n.
$λ≠\frac{1}{2}$,0时,数列{bn}的前n项和Sn=$\frac{2λ[(2λ)^{n}-1]}{2λ-1}$.
∴Sn=$\left\{\begin{array}{l}{n,λ=\frac{1}{2}}\\{\frac{2λ[(2λ)^{n}-1]}{2λ-1},λ≠\frac{1}{2},0}\end{array}\right.$.
点评 本题考查了等比数列与等差数列的通项公式及其前n项和公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | (1,$\sqrt{2}$) | C. | ($\sqrt{2}$,+∞) | D. | (0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| $\overline{I}$ | $\overline{D}$ | $\overline{W}$ | $\underset{\stackrel{10}{∑}}{i=1}({I}_{i}-\overline{I})^{2}$ | $\underset{\stackrel{10}{∑}}{i=1}({W}_{i}-\overline{W})^{2}$ | $\underset{\stackrel{10}{∑}}{i=1}({I}_{i}-\overline{I})({D}_{i}-\overline{D})$ | $\underset{\stackrel{10}{∑}}{i=1}({W}_{i}-\overline{W})({D}_{i}-\overline{D})$ |
| 1.04×10-11 | 45.7 | -11.5 | 1.56×10-21 | 0.51 | 6.88×10-11 | 5.1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com