精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax+lnx(a∈R)
(1)求f(x)的单调区间;
(2)设g(x)=x2-2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求实数a的取值范围.

解:(1)…(2分)
当a≥0时,由于x∈(0,+∞),f′(x)>0,所以函数f(x)的单调增区间为(0,+∞),…(4分)
当a<0时,令f'(x)=0,得
当x变化时,f'(x)与f(x)变化情况如下表:

所以函数f(x)的单调增区间为(0,),函数f(x)的单调减区间为…(6分)
(2)由已知,转化为f(x)max<g(x)max…(8分)
因为g(x)=x2-2x+2=(x-1)2+1,x∈[0,1],
所以g(x)max=2…(9分)
由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.
(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.) …(10分)
当a<0时,f(x)在上单调递增,在上单调递减,
故f(x)的极大值即为最大值,,…(11分)
所以2>-1-ln(-a),解得.…(12分)
分析:(1)先求f(x)的导数,再对参数a进行讨论,利用导数函数值的正负,从而可求f(x)的单调区间;
(2)对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),等价于f(x)max<g(x)max,分别求出相应的最大值,即可求得实数a的取值范围.
点评:本题重点考查导数知识的运用,考查函数的单调性,考查函数的最值,考查分类讨论的数学思想,解题的关键是利用导数确定函数的单调性
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案