精英家教网 > 高中数学 > 题目详情
14.已知椭圆C:2x2+y2=16.
(1)求椭圆C的离心率;
(2)设O为原点,点A在椭圆C上,点B在直线x=4上,且$\overrightarrow{OA}•\overrightarrow{OB}$=0,求直线AB截圆x2+y2=17所得弦长为l.

分析 (1)化椭圆方程为标准式,求出a,b的值,利用隐含条件求得c,则椭圆离心率可求;
(2)依题意设(x0,y0),B(4,t),由$\overrightarrow{OA}•\overrightarrow{OB}$=0,把B的坐标用A的坐标表示,写出过A、B的点斜式方程,由点到直线的距离公式求出坐标原点O到AB的距离,再由垂径定理求得直线AB截圆x2+y2=17所得弦长.

解答 解:(1)由椭圆C:2x2+y2=16,得$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{16}=1$,
∴$a=4,b=2\sqrt{2}$,则$c=\sqrt{{a}^{2}-{b}^{2}}=\sqrt{16-8}=2\sqrt{2}$.
故椭圆C的离心率为e=$\frac{c}{a}=\frac{\sqrt{2}}{2}$;
(2)设A(x0,y0),B(4,t),
∴$\frac{{{x}_{0}}^{2}}{8}+\frac{{{y}_{0}}^{2}}{16}=1$,①
由$\overrightarrow{OA}•\overrightarrow{OB}$=0,得$t=\frac{4{x}_{0}}{-{y}_{0}}$,②
根据点斜式得到直线AB的方程为:y-t=$\frac{{y}_{0}-t}{{x}_{0}-4}(x-4)$,化简得
(y0-t)x-(x0-4)y-4y0+tx0=0.
原点O到AB的距离d=$\frac{|-4{y}_{0}+t{x}_{0}|}{\sqrt{({y}_{0}-t)^{2}+({x}_{0}-4)^{2}}}$.
将①②代入可得:d=$\frac{|-4{y}_{0}+t{x}_{0}|}{\sqrt{({y}_{0}-t)^{2}+({x}_{0}-4)^{2}}}$=$\frac{|4{y}_{0}-\frac{4{x}_{0}}{-{y}_{0}}|}{\sqrt{{{y}_{0}}^{2}-2•\frac{4{x}_{0}}{-{y}_{0}}•{y}_{0}+{{x}_{0}}^{2}-8{x}_{0}+16}}$
=$\frac{|4{{y}_{0}}^{2}+4{{x}_{0}}^{2}|}{\sqrt{{{y}_{0}}^{4}+16{{x}_{0}}^{2}+{{x}_{0}}^{2}{{y}_{0}}^{2}+16{{y}_{0}}^{2}}}$=$\frac{|2{{y}_{0}}^{2}+32|}{\sqrt{\frac{1}{2}({{y}_{0}}^{2}+16)^{2}}}=2\sqrt{2}•\frac{{{y}_{0}}^{2}+16}{{{y}_{0}}^{2}+16}=2\sqrt{2}$.
在圆x2+y2=17中,利用勾股定理可得$\frac{l}{2}=\sqrt{17-(2\sqrt{2})^{2}}=3$.
∴直线AB截圆x2+y2=17所得弦长为6.

点评 本题考查椭圆的简单性质,考查了直线与圆锥曲线位置关系的应用,考查计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.一个空间几何体的三视图如图所示,那么这个空间几何体是(  )
A.B.圆锥C.正方体D.圆柱

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1、F2,且A(a,0)、B(0,b)满足条件|AB|=$\frac{{\sqrt{2}}}{2}$|F1F2|.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若坐标原点O到直线AB的距离为$\frac{{3\sqrt{3}}}{2}$,求椭圆C的方程;
(Ⅲ)在(Ⅱ)的条件下,过点P(-2,1)的直线l与椭圆C交于M、N两点,且点P恰为线段MN的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.定义在R上的函数f(x)满足f(x+2)=f(x)-2,当x∈(0,2]时,f(x)=$\left\{\begin{array}{l}{{x}^{2}-x-6,x∈(0,1]}\\{-{2}^{x-1}-5,x∈(1,2]}\end{array}\right.$,若x∈(-6,-4]时,关于x的方程af(x)-a2+2=0(a>0)有解,则实数a的取值范围是0<a≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|2x+1|-|x-a|(a>0).
(Ⅰ)当a=1时,求不等式f(x)≤x的解集;
(Ⅱ)当x≤-$\frac{1}{2}$时,不等式f(x)+t2+2t+3≥0对任意t∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),过点Q($\sqrt{2}$,1),右焦点F($\sqrt{2}$,0),
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=k(x-1)分别交x轴,y轴于C,D两点,且与椭圆C交于M,N两点,若$\overrightarrow{CN}=\overrightarrow{MD}$,求k值;
(Ⅲ)自椭圆C上异于其顶点的任意一点P,作圆O:x2+y2=2的两条切线切点分别为P1,P2,若直线P1P2在x轴,y轴上的截距分别为m,n,证明:$\frac{1}{m^2}+\frac{2}{n^2}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某程序框图如图所示,其中t∈Z,该程序运行后输出的k=4,则t的最大值为(  )
A.10B.11C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),点M是圆x2+y2=4上的动点,动点G满足$\overrightarrow{{F}_{2}M}$=$\overrightarrow{MG}$,过点M作直线l⊥F2G并交直线F1G于点N.
(1)求点N的轨迹方程E;
(2)设P是(1)中轨迹E上第一象限内的点,点P关于原点O的对称点为A,关于x轴的对称点为Q,线段PQ与x轴相交于点C,点D为CQ的中点,若直线AD与椭圆E的另一个交点为B,试判断直线PA,PB是否相互垂直?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.由直线x=$\frac{1}{2}$,y=x,曲线y=$\frac{1}{x}$所围成封闭图形的面积为ln2-$\frac{3}{8}$.

查看答案和解析>>

同步练习册答案