精英家教网 > 高中数学 > 题目详情
3.已知F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),点M是圆x2+y2=4上的动点,动点G满足$\overrightarrow{{F}_{2}M}$=$\overrightarrow{MG}$,过点M作直线l⊥F2G并交直线F1G于点N.
(1)求点N的轨迹方程E;
(2)设P是(1)中轨迹E上第一象限内的点,点P关于原点O的对称点为A,关于x轴的对称点为Q,线段PQ与x轴相交于点C,点D为CQ的中点,若直线AD与椭圆E的另一个交点为B,试判断直线PA,PB是否相互垂直?并证明你的结论.

分析 (1)连接NF2,则|NF2|=|NG|,利用椭圆的定义,即可求椭圆E的方程;
(2)PA⊥PB,设P(x0,y0),将直线AD的方程y=$\frac{{y}_{0}}{4{x}_{0}}$(x+x0)-y0代入椭圆的方程,并整理,求出B的坐标,证明kPA•kPB=-1,即可得到结论.

解答 解:(1)连接NF2,则|NF2|=|NG|,
∴|NF1|+|NF2|=|F1G|.
连接OM,则|F1G|=2|OM|=4,
∴|NF1|+|NF2|=4>|F1F2|,
∴点N的轨迹是以F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0)为焦点的椭圆,且2a=4,2c=2$\sqrt{3}$,
∴a=2,c=$\sqrt{3}$,
∴b=1,
∴点N的轨迹方程E:$\frac{{x}^{2}}{4}+{y}^{2}$=1;
(2)PA⊥PB.
证明:设P(x0,y0),则A(-x0,-y0),D(x0,-$\frac{1}{2}$y0)且x02+4y02=4
将直线AD的方程y=$\frac{{y}_{0}}{4{x}_{0}}$(x+x0)-y0代入椭圆的方程,
并整理得(4x02+y02)x-6x0y02+9x02y02-16x02=0
由题意,可知此方程必有一根-x0
xB=$\frac{6{x}_{0}{{y}_{0}}^{2}}{4{{x}_{0}}^{2}+{{y}_{0}}^{2}}$+x0,yB=$\frac{{{y}_{0}}^{3}-2{{x}_{0}}^{2}{y}_{0}}{4{{x}_{0}}^{2}+{{y}_{0}}^{2}}$,
所以kPB=$\frac{\frac{{{y}_{0}}^{3}-2{{x}_{0}}^{2}{y}_{0}}{4{{x}_{0}}^{2}+{{y}_{0}}^{2}}-{y}_{0}}{\frac{6{x}_{0}{{y}_{0}}^{2}}{4{{x}_{0}}^{2}+{{y}_{0}}^{2}}}$=$\frac{-6{{x}_{0}}^{2}{y}_{0}}{6{x}_{0}{{y}_{0}}^{2}}$=-$\frac{{x}_{0}}{{y}_{0}}$
故有kPA•kPB=-1,即PA⊥PB.

点评 本题考查椭圆的方程,考查直线与椭圆的位置关系,考查韦达定理的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知点M是圆C:x2+y2=4上一动点,点D是M在x轴上的投影,P为线段MD上一点,且与点Q关于原点O对称,满足$\overrightarrow{QP}$=$\overrightarrow{OM}$+$\overrightarrow{OD}$.
(1)求动点P的轨迹E的方程;
(2)过点P做E的切线l与圆C相交于A,B两点,当△QAB面积的最大值时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:2x2+y2=16.
(1)求椭圆C的离心率;
(2)设O为原点,点A在椭圆C上,点B在直线x=4上,且$\overrightarrow{OA}•\overrightarrow{OB}$=0,求直线AB截圆x2+y2=17所得弦长为l.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,内角A,B,C的对边分别为a,b,c,且2c-2acosB=b.
(1)求角A的大小;
(2)若△ABC的面积为$\frac{\sqrt{3}}{4}$,且c2+abcosC+a2=4,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将函数y=sin(-2x)+cos(2x)的图象(  )得到函数y=$\sqrt{2}$sin(-2x)的图象.
A.向左平移$\frac{π}{8}$个单位B.向右平移$\frac{π}{8}$个单位
C.向左平移$\frac{π}{4}$个单位D.向右平移$\frac{π}{4}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知α,β是两个不同的平面,m,n是两条不同的直线,则下列命题不正确的是(  )
A.若m∥n,m⊥α,则n⊥αB.若m⊥α,m?β,则α⊥β
C.若m∥α,α∩β=n,则m∥nD.若m⊥β,m⊥α,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如表是一个由n2个正数组成的数表,用aij表示第i行第j个数(i,j∈N),已知数表中第一列各数从上到下依次构成等差数列,每一行各数从左到右依次构成等比数列,且公比都相等.已知a11=1,a31+a61=9,a35=48.
(1)求an1和a4n
(2)设cn=$\frac{{2{a_{n1}}}}{{{a_{4n}}}}$,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.我国古代秦九韶算法可计算多项式anxn+an-1xn-1+…+a1x+a0的值,当多项式为x4+4x3+6x2+4x+1时,求解它的值所反映的程序框图如图所示,当x=1时输出的结果为(  )
A.15B.5C.16D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行如图所示的程序框图,输出的S的值是(  )
A.31B.63C.64D.127

查看答案和解析>>

同步练习册答案