精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=ln(x+3)+ax+2(a∈R)在点x=-2处取得极值.
(1)求实数a的值;
(2)若函数g(x)=f(x)+kx(k∈R)在区间(-3,2]上是增函数,求实数k的取值范围.

分析 (1)对其进行求导,再令导数等于0,即可求出a的值,
(2)g(x)=f(x)+kx(k∈R)在区间(-3,2]上是增函数,可以对其进行求导,将问题转化为g′(x)>0在区间(-3,2]上恒成立,从而求解

解答 解:(1)∵f(x)=ln(x+3)+ax+2,
∴f′(x)=$\frac{1}{x+3}$+a,
∵f(x)在x=-2处取得极值,
∴f′(-2)=$\frac{1}{-2+3}$+a=0,
解得:a=-1,经检验符合题意,
(2)由(1)可知f(x)=ln(x+3)-x+2,
∴g(x)=ln(x+3)+(k-1)x+2,
∴g′(x)=$\frac{1}{x+3}$+k-1
∵g(x)在区间(-3,2]上为增函数,
∴g′(x)>0在区间(-3,2]上恒成立,
即k≥1-$\frac{1}{x+3}$在(-3,2]上恒成立,而1-$\frac{1}{x+3}$在此区间上的最大值为$\frac{4}{5}$,
故k≥$\frac{4}{5}$.

点评 本题主要考查函数的极值与导数的关系,以及利用导数求函数的单调性,综合性比较强;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.一家面包根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求该面包房日销售量的平均值,中位数;
(2)用X表示在未来3天里销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右顶点为A,离心率为e,且椭圆E过点$B(2e,\frac{b}{2})$,以AB为直径的圆恰好经过椭圆的右焦点.
(1)求椭圆E的标准方程;
(2)设过点C(-1,0)的直线l交曲线E于F,H两点,且直线OH交椭圆E于另一点G,问△FHG面积是否存在最大值?若有,请求出;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某工程的工序流程如图所示,其中流程线上字母表示工序,数字表示工序所需工时,现已知工程总工时为10天,则工序c所需时为4 天.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在高台跳水中,t s时运动员相对水面的高度(单位:m)是h(t)=-4.9t2+6.5t+10,则t=2s时的速度是(  )
A.13.1m/sB.-13.1m/sC.-26.1m/sD.26.1m/s

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若数列{an}的前n项和为Sn=n2-10n(n∈N*),求此数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,b=2,a=4,C=45°,则△ABC的面积S=(  )
A.$2\sqrt{3}$B.2C.4D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a>b>c>0,则下列不等式成立的是(  )
A.$\frac{1}{a-b}$+$\frac{1}{b-c}$>$\frac{4}{a-c}$B.$\frac{1}{a-b}$+$\frac{1}{b-c}$<$\frac{4}{a-c}$C.$\frac{1}{a-b}$+$\frac{1}{b-c}$≥$\frac{4}{a-c}$D.$\frac{1}{a-b}$+$\frac{1}{b-c}$≤$\frac{4}{a-c}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若命题“?x0∈R,x02-ax0+2<0”为假命题,则实数a的取值范围是[-2$\sqrt{2}$,2$\sqrt{2}$].

查看答案和解析>>

同步练习册答案