精英家教网 > 高中数学 > 题目详情
11.某工程的工序流程如图所示,其中流程线上字母表示工序,数字表示工序所需工时,现已知工程总工时为10天,则工序c所需时为4 天.

分析 结合所给工序流程图分析好可以合并的工序,注意利用优选法对重复的供需选择用时较多的.进而得出关键路线,问题即可获得解答.

解答 解:设工序c所需工时数为x天,
由题设,关键路线是a→c→e→g,
需要工时为1+x+4+1=10,
∴x=4,即工序c所需工时数为4天.
故答案是:4.

点评 本题考查的是工序流程图(即统筹图),在解答的过程当中充分体现了优选法的利用、读图表审图表的能力以及问题的转化和分析能力.值得同学们体会和反思.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-ax-$\frac{a}{4}+\frac{1}{2}$,x∈[0,1],求f(x)的最小值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.把正整数按一定的规则排成了如图所示的三角形数表.设aij(i,j∈N*)是位于这个三角形数表中从上往下数第i行、从左往右数第j个数,如a42=8.若aij=2016,则i与j的和为(  )
A.80B.81C.82D.83

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若方程$\frac{{x}^{2}}{1-k}$+$\frac{{y}^{2}}{2+k}$=1表示椭圆,则k的取值范围为$(-2,-\frac{1}{2})$∪$(-\frac{1}{2},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=$\sqrt{2}$.
(1)证明:DE⊥平面ACD;
(2)求棱锥C-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设$\overrightarrow{a}$为单位向量,|$\overrightarrow{b}$|=2,<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{3}$,两组向量$\overrightarrow{{x}_{1}}$,$\overrightarrow{{x}_{2}}$,$\overrightarrow{{x}_{3}}$,$\overrightarrow{{x}_{4}}$和$\overrightarrow{{y}_{1}}$,$\overrightarrow{{y}_{2}}$,$\overrightarrow{{y}_{3}}$,$\overrightarrow{{y}_{4}}$均由2个$\overrightarrow{a}$和2个$\overrightarrow{b}$排列而成,设S=$\overrightarrow{{x}_{1}}$•$\overrightarrow{{y}_{1}}$+$\overrightarrow{{x}_{2}}$•$\overrightarrow{{y}_{2}}$+$\overrightarrow{{x}_{3}}$•$\overrightarrow{{y}_{3}}$+$\overrightarrow{{x}_{4}}$•$\overrightarrow{{y}_{4}}$,则把所有的可能结果输入如图框图,则输出的结果为(  )
A.A=10,B=4B.A=4,B=10C.A=7,B=4D.A=10,B=7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ln(x+3)+ax+2(a∈R)在点x=-2处取得极值.
(1)求实数a的值;
(2)若函数g(x)=f(x)+kx(k∈R)在区间(-3,2]上是增函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)分别比较log23和log34,log34和log45的大小,归纳出一个一般性的结论,并证明你的结论;
(2)已知a,b,x,y∈R,证明:(a2+b2)(x2+y2)≥(ax+by)2,并利用上述结论求(sin2x+cos2x)($\frac{1}{{{{sin}^2}x}}$+$\frac{4}{{{{cos}^2}x}}$)的最小值(其中x∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某组合体如图所示,上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.正四棱锥P-EFGH的高为$\sqrt{3}$,EF长为2,AE长为1,则该组合体的表面积为(  )
A.20B.4$\sqrt{3}$+12C.16D.4$\sqrt{3}$+8

查看答案和解析>>

同步练习册答案