精英家教网 > 高中数学 > 题目详情
2.把正整数按一定的规则排成了如图所示的三角形数表.设aij(i,j∈N*)是位于这个三角形数表中从上往下数第i行、从左往右数第j个数,如a42=8.若aij=2016,则i与j的和为(  )
A.80B.81C.82D.83

分析 由三角形数表可以看出其奇数行为奇数列,偶数行为偶数列,前31个偶数行内数的个数的和为992,前32个偶数行内数的个数的和为1056个,得到第1008个偶数2016在第32个数数行内,确定2016是第几行第几列的数字,得到结果.

解答 解:由三角形数表可以看出其奇数行中的数都是奇数,偶数行中的数都是偶数,
2016=2×1008,
∴2016为第1008个偶数,
∵前31个偶数行内数的个数的和为992,
前32个偶数行内数的个数的和为1056个,
∴第1008个偶数2016在第32个数数行内,即i=64,
又由1008-992=16得:j=16,
∴i+j=64+16=80.
故选:A.

点评 本题考查简单的归纳推理的应用,根据数表中的数值归纳出数的特点是解决本题的关键,考查学生的归纳能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{x+a}{{x}^{2}+bx+1}$是奇函数.
(1)求实数a和b的值;
(2)证明y=f(x)在区间(1,+∞)上的单调递减;
(3)已知k<0且不等式f(t2-2t+3)+f(k-1)<0对任意的t∈R恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.一家面包根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求该面包房日销售量的平均值,中位数;
(2)用X表示在未来3天里销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知向量$\overrightarrow m=({e^x}+\frac{x^2}{2},x)$,$\overrightarrow n=(2,a)$,若对于函数$f(x)=\overrightarrow m•\overrightarrow n$在区间(-1,0)上存在单调递增区间,则实数a的取值范围是[-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某校高三年级有班号为1~9的9个班,从这9个班中任抽5个班级参加一项活动,则抽出班级的班号的中位数是5的概率等于(  )
A.$\frac{5}{7}$B.$\frac{5}{9}$C.$\frac{2}{7}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.以$2i-\sqrt{5}$的虚部为实部,以$\sqrt{5}i+2{i^2}$的实部为虚部的新复数是(  )
A.2-2iB.2+iC.-$\sqrt{5}$+$\sqrt{5}i$D.$\sqrt{5}$+$\sqrt{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右顶点为A,离心率为e,且椭圆E过点$B(2e,\frac{b}{2})$,以AB为直径的圆恰好经过椭圆的右焦点.
(1)求椭圆E的标准方程;
(2)设过点C(-1,0)的直线l交曲线E于F,H两点,且直线OH交椭圆E于另一点G,问△FHG面积是否存在最大值?若有,请求出;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某工程的工序流程如图所示,其中流程线上字母表示工序,数字表示工序所需工时,现已知工程总工时为10天,则工序c所需时为4 天.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a>b>c>0,则下列不等式成立的是(  )
A.$\frac{1}{a-b}$+$\frac{1}{b-c}$>$\frac{4}{a-c}$B.$\frac{1}{a-b}$+$\frac{1}{b-c}$<$\frac{4}{a-c}$C.$\frac{1}{a-b}$+$\frac{1}{b-c}$≥$\frac{4}{a-c}$D.$\frac{1}{a-b}$+$\frac{1}{b-c}$≤$\frac{4}{a-c}$

查看答案和解析>>

同步练习册答案