精英家教网 > 高中数学 > 题目详情
1.某组合体如图所示,上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.正四棱锥P-EFGH的高为$\sqrt{3}$,EF长为2,AE长为1,则该组合体的表面积为(  )
A.20B.4$\sqrt{3}$+12C.16D.4$\sqrt{3}$+8

分析 求出正四棱锥P-EFGH的斜高,即可求出该组合体的表面积.

解答 解:由题意,正四棱锥P-EFGH的斜高为$\sqrt{3+1}$=2,
该组合体的表面积为2×2+4×2×1+4×$\frac{1}{2}×2×2$=20,
故选A.

点评 本题考查该组合体的表面积,考查学生的计算能力,求出正四棱锥P-EFGH的斜高是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.某工程的工序流程如图所示,其中流程线上字母表示工序,数字表示工序所需工时,现已知工程总工时为10天,则工序c所需时为4 天.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a>b>c>0,则下列不等式成立的是(  )
A.$\frac{1}{a-b}$+$\frac{1}{b-c}$>$\frac{4}{a-c}$B.$\frac{1}{a-b}$+$\frac{1}{b-c}$<$\frac{4}{a-c}$C.$\frac{1}{a-b}$+$\frac{1}{b-c}$≥$\frac{4}{a-c}$D.$\frac{1}{a-b}$+$\frac{1}{b-c}$≤$\frac{4}{a-c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.过点P(1,2)作直线l与圆x2+y2=9交于A,B两点,若|AB|=4$\sqrt{2}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知F1,F2分别为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线C的左、右两支分别交于A,B两点,若|AB|:|BF2|:|AF2|=5:12:13,则双曲线的离心率为(  )
A.$\sqrt{13}$B.$\sqrt{41}$C.$\sqrt{15}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<0)的图象的最高点为($\frac{3π}{8}$,$\sqrt{2}$),其图象的相邻两个对称中心之间的距离为$\frac{π}{2}$,则φ=(  )
A.$-\frac{π}{3}$B.$-\frac{π}{4}$C.$-\frac{π}{6}$D.$-\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若命题“?x0∈R,x02-ax0+2<0”为假命题,则实数a的取值范围是[-2$\sqrt{2}$,2$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.三棱锥P-ABC中,PA=2,BC=3,PA⊥BC,如图所示,作与PA、BC都平行的截面,分别交棱PB、BC、AC、AB于点E、F、G、H,则截面EFGH的最大面积为(  )
A.3B.6C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,内角A,B,C的对边分别是a,b,c,且a2,b2,c2成等差数列,则sinB的最大值是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案