精英家教网 > 高中数学 > 题目详情
20.(1)分别比较log23和log34,log34和log45的大小,归纳出一个一般性的结论,并证明你的结论;
(2)已知a,b,x,y∈R,证明:(a2+b2)(x2+y2)≥(ax+by)2,并利用上述结论求(sin2x+cos2x)($\frac{1}{{{{sin}^2}x}}$+$\frac{4}{{{{cos}^2}x}}$)的最小值(其中x∈R).

分析 (1)作差(作商),即可比较证明大小;
(2)作差比较即可证明;由不等式(a2+b2)(x2+y2)≥(ax+by)2成立知$({sin^2}x+{cos^2}x)(\frac{1}{{{{sin}^2}x}}+\frac{4}{{{{cos}^2}x}})≥9$,即可得出结论.

解答 解:(1)log23-log34=$\frac{lg3}{lg2}-\frac{lg4}{lg3}$=$\frac{l{g}^{2}3-lg2lg4}{lg2lg3}$>$\frac{l{g}^{2}3-(\frac{lg2+lg4}{2})^{2}}{lg2lg3}$>$\frac{l{g}^{2}3-(\frac{1}{2}lg9)^{2}}{lg2lg3}$=0,
所以log23>log34
同理log34>log45,
一般性的结论:logn(n+1)>log(n+1)(n+2).(n∈N+
$\frac{lo{g}_{(n+1)}(n+2)}{lo{g}_{n}(n+1)}$=log(n+1)(n+2)log(n+1)n<$[\frac{lo{g}_{(n+1)}(n+2)n}{2}]^{2}$<1,
∵logn(n+1)>0,∴logn(n+1)>log(n+1)(n+2).(n∈N+);
(2)∵(a2+b2)(x2+y2)-(ax+by)2=a2x2+a2y2+b2x2+b2y2-(a2x2+2abxy+b2y2)=a2y2-2abxy+b2x2=(ay-bx)2≥0∴(a2+b2)(x2+y2)≥(ax+by)2
由不等式(a2+b2)(x2+y2)≥(ax+by)2成立
知$({sin^2}x+{cos^2}x)(\frac{1}{{{{sin}^2}x}}+\frac{4}{{{{cos}^2}x}})≥9$,
∴(sin2x+cos2x)($\frac{1}{{{{sin}^2}x}}$+$\frac{4}{{{{cos}^2}x}}$)的最小值为9.

点评 本题考查合情推理,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知向量$\overrightarrow m=({e^x}+\frac{x^2}{2},x)$,$\overrightarrow n=(2,a)$,若对于函数$f(x)=\overrightarrow m•\overrightarrow n$在区间(-1,0)上存在单调递增区间,则实数a的取值范围是[-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某工程的工序流程如图所示,其中流程线上字母表示工序,数字表示工序所需工时,现已知工程总工时为10天,则工序c所需时为4 天.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若数列{an}的前n项和为Sn=n2-10n(n∈N*),求此数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,b=2,a=4,C=45°,则△ABC的面积S=(  )
A.$2\sqrt{3}$B.2C.4D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系xOy中,已知抛物线C的顶点在坐标原点,焦点在x轴上,若曲线C经过点P(1,2),则其焦点到准线的距离为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a>b>c>0,则下列不等式成立的是(  )
A.$\frac{1}{a-b}$+$\frac{1}{b-c}$>$\frac{4}{a-c}$B.$\frac{1}{a-b}$+$\frac{1}{b-c}$<$\frac{4}{a-c}$C.$\frac{1}{a-b}$+$\frac{1}{b-c}$≥$\frac{4}{a-c}$D.$\frac{1}{a-b}$+$\frac{1}{b-c}$≤$\frac{4}{a-c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.过点P(1,2)作直线l与圆x2+y2=9交于A,B两点,若|AB|=4$\sqrt{2}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.三棱锥P-ABC中,PA=2,BC=3,PA⊥BC,如图所示,作与PA、BC都平行的截面,分别交棱PB、BC、AC、AB于点E、F、G、H,则截面EFGH的最大面积为(  )
A.3B.6C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

同步练习册答案