精英家教网 > 高中数学 > 题目详情
20.已知cosα=$\frac{1}{3}$,α∈(0,π),则cos($\frac{3}{2}$π+2α)等于(  )
A.$-\frac{{4\sqrt{2}}}{9}$B.$-\frac{7}{9}$C.$\frac{4\sqrt{2}}{9}$D.$\frac{7}{9}$

分析 由已知求出sinα,再由诱导公式及同角三角函数基本关系式求解.

解答 解:∵cosα=$\frac{1}{3}$,且α∈(0,π),
∴sinα=$\sqrt{1-(\frac{1}{3})^{2}}=\frac{2\sqrt{2}}{3}$.
∴cos($\frac{3}{2}$π+2α)=sin2α=2sinαcosα=2×$\frac{1}{3}×\frac{2\sqrt{2}}{3}$=$\frac{4\sqrt{2}}{9}$,
故选:C.

点评 本题考查三角函数的化简求值,考查诱导公式及同角三角函数基本关系式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在△ABC中,已知角A、B、C的对边分别为a、b、c,a=7,b=3,c=5,求△ABC的最大内角与sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=2sinx-cosx在x0处取得最大值,则cosx0=(  )
A.$-\frac{{\sqrt{5}}}{5}$B.$\frac{{\sqrt{5}}}{5}$C.$-\frac{{2\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦点,斜率为2,若与双曲线的两个交点分别在左右两支上,则双曲线离心率e的取值范围是(  )
A.$e>\sqrt{2}$B.$1<e<\sqrt{3}$C.$e>\sqrt{5}$D.$1<e<\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.为了探究电离辐射的剂量与人体的受损程度是否有关,用两种不同剂量的电离辐射照射小白鼠.在照射14天内的结果如表所示:
死亡存活总计
第一种剂量141125
第二种剂量61925
总计203050
进行统计分析时的统计假设是小白鼠的死亡与剂量无关.
解析 根据独立性检验的基本思想,可知类似于反证法,即要确认“两个分量有关系”这一结论成立的可信程度,首先假设该结论不成立.对于本题,进行统计分析时的统计假设应为“小白鼠的死亡与剂量无关”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合A={x|x2-3x-4≥0},B={x|y=$\sqrt{1-{x}^{2}}$},则(∁RA)∩B=(  )
A.{x|-1≤x≤1}B.{x|-1<x<1}C.{-1,1}D.{x|-1<x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知扇形的中心角为2,扇形所在圆的半径为r,若扇形的面积值与周长值的差为f(r),求f(r)的最小值及对应r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.△ABC中,AC=4,AB=2,若点G为△ABC的重心,则$\overrightarrow{AG}•\overrightarrow{BC}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点A(1+a,2a),B(1-a,3),直线AB的倾斜角为90°,则a=0.

查看答案和解析>>

同步练习册答案