【题目】某校抽取了100名学生期中考试的英语和数学成绩,已知成绩都不低于100分,其中英语成绩的频率分布直方图如图所示,成绩分组区间是
,
,
,
,
.
![]()
(1)根据频率分布直方图,估计这100名学生英语成绩的平均数和中位数(同一组数据用该区间的中点值作代表);
(2)若这100名学生数学成绩分数段的人数y的情况如下表所示:
分组区间 |
|
|
|
|
|
y | 15 | 40 | 40 | m | n |
且区间
内英语人数与数学人数之比为
,现从数学成绩在
的学生中随机选取2人,求选出的2人中恰好有1人数学成绩在
的概率.
科目:高中数学 来源: 题型:
【题目】在△ABC中,BC边上的高所在直线的方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0.若点B的坐标为(1,2),求点A和点C的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
(
)的离心率为
,且经过点
.
(1)求椭圆
的方程;
(2)过点
作直线
与椭圆
交于不同的两点
,
,试问在
轴上是否存在定点
使得直线
与直线
恰关于
轴对称?若存在,求出点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
.
(1)若曲线
在点
处的切线方程为
,求函数
的解析式;
(2)讨论函数
的单调性;
(3)若对于任意的
,不等式
在
上恒成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若存在常数
,使得无穷数列
满足
,则称数列
为“Γ数列.已知数列
为“Γ数列”.
(1)若数列
中,
,试求
的值;
(2)若数列
中,
,记数列
的前n项和为
,若不等式
对
恒成立,求实数λ的取值范围;
(3)若
为等比数列,且首项为b,试写出所有满足条件的
,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列
满足:
,当
',
时,
(其中
表示
,
,…,
中的最大项),有以下结论:
① 若数列
是常数列,则
;
② 若数列
是公差
的等差数列,则
;
③ 若数列
是公比为
的等比数列,则
:
④ 若存在正整数
,对任意
,都有
,则
,是数列
的最大项.
其中正确结论的序号是____(写出所有正确结论的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列
,若存在正数p,使得
对任意
都成立,则称数列
为“拟等比数列”.
已知
,
且
,若数列
和
满足:
,
且
,
.
若
,求
的取值范围;
求证:数列
是“拟等比数列”;
已知等差数列
的首项为
,公差为d,前n项和为
,若
,
,
,且
是“拟等比数列”,求p的取值范围
请用
,d表示
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对年利率为
的连续复利,要在
年后达到本利和
,则现在投资值为
,
是自然对数的底数.如果项目
的投资年利率为
的连续复利.
(1)现在投资5万元,写出满
年的本利和,并求满10年的本利和;(精确到0.1万元)
(2)一个家庭为刚出生的孩子设立创业基金,若每年初一次性给项目
投资2万元,那么,至少满多少年基金共有本利和超过一百万元?(精确到1年)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
满足:
,
(其中
为非零实常数).
(1)设
,求证:数列
是等差数列,并求出通项公式;
(2)设
,记
,求使得不等式
成立的最小正整数
;
(3)若
,对于任意的正整数
,均有
,当
、
、
依次成等比数列时,求
、
、
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com