精英家教网 > 高中数学 > 题目详情
7.已知正实数a,b,c满足a+b2+c3=1.
(Ⅰ)求$\frac{1}{a^2}$+$\frac{1}{b^4}$+$\frac{1}{c^6}$的最小值m;
(Ⅱ)在(Ⅰ)的条件下,若|x-d|+|x+16|≥m恒成立,求实数d的取值范围.

分析 (Ⅰ)由正实数a,b,c满足a+b2+c3=1,运用三元均值不等式,可得ab2c3≤$\frac{1}{27}$,再由均值不等式即可得$\frac{1}{a^2}$+$\frac{1}{b^4}$+$\frac{1}{c^6}$的最小值m.
(Ⅱ)利用绝对值不等式的几何意义可求得|x-d|+|x+16|≥|x-d-x-16|=|d+16|,由题意及(Ⅰ)得,|d+16|≥27,从而可求得实数d的取值范围.

解答 解:(Ⅰ)因为正实数a,b,c满足a+b2+c3=1,
所以a+b2+c3=1≥$3\root{3}{a{b}^{2}{c}^{3}}$,即ab2c3≤$\frac{1}{27}$,当且仅当a=b2=c3时取等号,
所以$\frac{1}{a^2}$+$\frac{1}{b^4}$+$\frac{1}{c^6}$≥$3\root{3}{\frac{1}{{a}^{2}{b}^{4}{c}^{6}}}$≥27,
所以$\frac{1}{a^2}$+$\frac{1}{b^4}$+$\frac{1}{c^6}$的最小值m=27;
(Ⅱ)因为|x-d|+|x+16|≥|x-d-x-16|=|d+16|,
由题意及(Ⅰ)得,|d+16|≥27,得d≥11或d≤-43.

点评 本题考查不等式的证明,考查绝对值不等式的解法,掌握绝对值不等式的几何意义是解决问题的关键,注意运用三元均值不等式,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.甲乙两位同学各有一个正八面体((有6个顶点和12条边8个面,它由8个等边三角形构成,如图所示),他们分别从这个八面体的六个顶点任意选取4个,则恰好有一人能将选取的4个点构成一个四面体的概率为$\frac{52}{225}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.己知函数f(x)=2sinxcosx+a(1-2sin2x)的图象关于直线x=-$\frac{π}{8}$对称.
(1)求实数a的值,并求出函数f(x)的最小正周期;
(2)求函数f(x),x∈[-π,π]的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,已知tanA,tanB是关于x的方程x2+(x+1)p+1=0的两个实根.
(1)求角C;
(2)求实数p的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=(a+1)lnx+$\frac{f'(1)-1}{3}$x2(a<-1)对任意的x1、x2>0,恒有|f(x1)-f(x2)|≥4|x1-x2|,则a的取值范围为(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在平行四边形ABCD中,AB=$\sqrt{2}$BC=2,∠BAD=45°,E为线段AB的动点,将△ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCD,则直线DC与平面A′DE所成角的最小值为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知AB为单位圆上的弦,P为单位圆上的点,若f(λ)=|$\overrightarrow{BP}$-λ$\overrightarrow{BA}$|的最小值为m(其中λ∈R),P在单位圆上运动时,m的最大值为$\frac{3}{2}$,则|$\overrightarrow{AB}$|的值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将函数y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象向右平移$\frac{π}{3}$个单位,再将图象上所有点的横坐标缩短为原来的$\frac{1}{2}$倍(纵坐标不变),所得图象的解析式为y=sinx,则ω,φ的值分别为(  )
A.ω=$\frac{1}{2},φ=\frac{π}{6}$B.$ω=\frac{1}{2},φ=-\frac{π}{6}$C.$ω=2,φ=\frac{π}{6}$D.$ω=2,φ=-\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设全集U={-3,-2,-1,0,1,2,3},子集A={0,a,a+3},B={b,b+1,3}.已知A,B至少有一个公共元素2,求a,b的值和A∩∁UB.

查看答案和解析>>

同步练习册答案