精英家教网 > 高中数学 > 题目详情
17.设全集U={-3,-2,-1,0,1,2,3},子集A={0,a,a+3},B={b,b+1,3}.已知A,B至少有一个公共元素2,求a,b的值和A∩∁UB.

分析 讨论a、b的取值,得出集合A、B;再计算∁UB与A∩∁UB.

解答 解:根据题意,当a=2时,a+3=5∉U,不合题意,舍去;
当a+3=2时,a=-1∈U,满足题意,∴a=-1;
∴A={0,-1,2};
当b=2时,b+1=3,不合题意,舍去;
当b+1=2时,b=1,满足题意,
∴B={1,2,3},
∴∁UB={-3,-2,-1,0};
∴A∩∁UB={-1,0}.

点评 本题考查了集合的定义与简单运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知正实数a,b,c满足a+b2+c3=1.
(Ⅰ)求$\frac{1}{a^2}$+$\frac{1}{b^4}$+$\frac{1}{c^6}$的最小值m;
(Ⅱ)在(Ⅰ)的条件下,若|x-d|+|x+16|≥m恒成立,求实数d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$满足$\overrightarrow a$+$\overrightarrow b$+$\overrightarrow c$=$\overrightarrow 0$且$\overrightarrow a$⊥$\overrightarrow c$,|${\overrightarrow b}$|=2|${\overrightarrow a}$|,则tan<$\overrightarrow{a}$,$\overrightarrow{b}$>=(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.己知函数f(x)=$\sqrt{3}$sinxcosx+sin2x+$\frac{1}{2}$(x∈R),
(Ⅰ)当x∈[-$\frac{π}{4},\frac{π}{6}}$]时,求函数f(x)的最小值和最大值;
(Ⅱ)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=$\sqrt{3}$,f(C)=2,若向量$\overrightarrow m=({1,a}$)与向量$\overrightarrow n=({2,b}$)共线,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若α、β是两个不重合的平面,
①如果平面α内有两条直线a、b都与平面β平行,那么α∥β;
②如果平面α内有无数条直线都与平面β平行,那么α∥β;
③如果直线a与平面α和平面β都平行,那么α∥β;
④如果平面α内所有直线都与平面β平行,那么α∥β,
下列命题正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.以下关系正确的有①②③④.(填序号).
①{a}⊆{a};②{1,2,3}={3,2,1};③∅?{0};④0∈{0};⑤∅∈{0};⑥∅={0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=aex-be-x-cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为2-c
(1)确定a,b的值
(2)当c=1时,判断f(x)的单调性
(3)若f(x)有极值,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数g(x)=Asinωx(A>0,ω>0)的最大值为2,其图象相邻两条对称轴之间的距离为$\frac{π}{2}$,将g(x)向右平移$\frac{π}{12}$个单位,再向上平移一个单位得到f(x)的图象
(1)求函数f(x)的解析式;
(2)设$α∈(0,\frac{π}{2})$,则$f(\frac{α}{2})=2$,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若f(x)是定义在R上的奇函数,且在区间(-∞,0)上是增函数,又f(2)=0,则xf(x)>0的解集为(-∞,-2)∪(2,+∞).

查看答案和解析>>

同步练习册答案