| A. | $\sqrt{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $-\frac{{\sqrt{3}}}{3}$ | D. | $-\sqrt{3}$ |
分析 根据向量垂直的关系以及向量数量积的应用先求出<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{2π}{3}$,即可得到结论.
解答 解:∵$\overrightarrow a$+$\overrightarrow b$+$\overrightarrow c$=$\overrightarrow 0$,
∴$\overrightarrow c$=-($\overrightarrow a$+$\overrightarrow b$),
∵$\overrightarrow a$⊥$\overrightarrow c$,
∴且$\overrightarrow a$•$\overrightarrow c$=-($\overrightarrow a$+$\overrightarrow b$)•$\overrightarrow a$=-|$\overrightarrow a$|2-$\overrightarrow a$•$\overrightarrow b$=0,
即|$\overrightarrow a$2|+$\overrightarrow a$•$\overrightarrow b$=0,
则$\overrightarrow a$•$\overrightarrow b$=-|$\overrightarrow a$|2,
则cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$=$\frac{-|\overrightarrow{a}{|}^{2}}{2|\overrightarrow{a}||\overrightarrow{a}|}=-\frac{1}{2}$,
则<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{2π}{3}$,
则tan<$\overrightarrow{a}$,$\overrightarrow{b}$>=tan$\frac{2π}{3}$=$-\sqrt{3}$,
故选:D.
点评 本题主要考查向量夹角的求解,根据向量垂直关系以及向量数量积的应用是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ω=$\frac{1}{2},φ=\frac{π}{6}$ | B. | $ω=\frac{1}{2},φ=-\frac{π}{6}$ | C. | $ω=2,φ=\frac{π}{6}$ | D. | $ω=2,φ=-\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 测试指标 | [70,76) | [76,82) | [82,88) | [88,94) | [94,100] |
| 芯片甲 | 8 | 12 | 40 | 32 | 8 |
| 芯片乙 | 7 | 18 | 40 | 29 | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com