精英家教网 > 高中数学 > 题目详情
16.将函数y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象向右平移$\frac{π}{3}$个单位,再将图象上所有点的横坐标缩短为原来的$\frac{1}{2}$倍(纵坐标不变),所得图象的解析式为y=sinx,则ω,φ的值分别为(  )
A.ω=$\frac{1}{2},φ=\frac{π}{6}$B.$ω=\frac{1}{2},φ=-\frac{π}{6}$C.$ω=2,φ=\frac{π}{6}$D.$ω=2,φ=-\frac{π}{6}$

分析 由题意利用y=Asin(ωx+φ)的图象变换规律,即可求得ω和φ的值.

解答 解:由题意,将y=sinx图象上所有点的横坐标伸长为原来的2倍,得到$y=sin\frac{1}{2}x$的图象,
再将该图象向左平移$\frac{π}{3}$个单位,得到$y=sin\frac{1}{2}({x+\frac{π}{3}})=sin({\frac{1}{2}x+\frac{π}{6}})$的图象即为函数y=sin(ωx+φ)的图象,
可得:ω=$\frac{1}{2},φ=\frac{π}{6}$.
故选:A.

点评 本题主要考查了y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ln(x+1)-ax,x=0是极值点.
(1)求实数a的值;
(2)设g(x)=$\frac{f(x-1)+x-1}{x}$,试比较g(4)+g(9)+…+g(n2)与$\frac{{2{n^2}-n-1}}{2(n+1)}$(n∈Z,n≥2)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知正实数a,b,c满足a+b2+c3=1.
(Ⅰ)求$\frac{1}{a^2}$+$\frac{1}{b^4}$+$\frac{1}{c^6}$的最小值m;
(Ⅱ)在(Ⅰ)的条件下,若|x-d|+|x+16|≥m恒成立,求实数d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义在R上的函数y=f(x),如果函数图象上任意一点都在曲线y2=|x|上,则下列结论正确的是①④⑤(写出所有正确结论的序号).
①f(0)=0;
②函数y=f(x)值域为R;
③函数y=f(x)是奇函数;
④函数y=f(x)的图象与直线x=1有且仅有一个交点;
⑤函数y=f(x)的图象与直线y=1最多有两个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若f(x)=$\left\{\begin{array}{l}a{x^2}+1,x≥0\\({a^2}-1){e^{ax}},x<0\end{array}$(a≠±1),在定义域(-∞,+∞)上是单调函数,则a的取值范围是(  )
A.(1,$\sqrt{2}$]B.[-$\sqrt{2}$,-1)∪[${\sqrt{2}$,+∞)C.(-∞,-$\sqrt{2}}$]∪(1,$\sqrt{2}}$]D.(0,$\frac{2}{3}}$)∪[${\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集U=R,集合A={x|0<x≤2},B={x|x2<1},则集合∁U(A∪B)等于(  )
A.(-∞,-1]B.[-1,2)C.(2,+∞)D.(-∞,-1]∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$满足$\overrightarrow a$+$\overrightarrow b$+$\overrightarrow c$=$\overrightarrow 0$且$\overrightarrow a$⊥$\overrightarrow c$,|${\overrightarrow b}$|=2|${\overrightarrow a}$|,则tan<$\overrightarrow{a}$,$\overrightarrow{b}$>=(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.己知函数f(x)=$\sqrt{3}$sinxcosx+sin2x+$\frac{1}{2}$(x∈R),
(Ⅰ)当x∈[-$\frac{π}{4},\frac{π}{6}}$]时,求函数f(x)的最小值和最大值;
(Ⅱ)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=$\sqrt{3}$,f(C)=2,若向量$\overrightarrow m=({1,a}$)与向量$\overrightarrow n=({2,b}$)共线,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数g(x)=Asinωx(A>0,ω>0)的最大值为2,其图象相邻两条对称轴之间的距离为$\frac{π}{2}$,将g(x)向右平移$\frac{π}{12}$个单位,再向上平移一个单位得到f(x)的图象
(1)求函数f(x)的解析式;
(2)设$α∈(0,\frac{π}{2})$,则$f(\frac{α}{2})=2$,求α的值.

查看答案和解析>>

同步练习册答案