精英家教网 > 高中数学 > 题目详情
11.若f(x)=$\left\{\begin{array}{l}a{x^2}+1,x≥0\\({a^2}-1){e^{ax}},x<0\end{array}$(a≠±1),在定义域(-∞,+∞)上是单调函数,则a的取值范围是(  )
A.(1,$\sqrt{2}$]B.[-$\sqrt{2}$,-1)∪[${\sqrt{2}$,+∞)C.(-∞,-$\sqrt{2}}$]∪(1,$\sqrt{2}}$]D.(0,$\frac{2}{3}}$)∪[${\sqrt{2}$,+∞)

分析 根据题意,通过分类讨论,即可求得答案.

解答 解:由题意得:①若f(x)在R上单调递增,
则根据二次函数的单调性以及复合函数的性质,可得$\left\{{\begin{array}{l}{a>0}\\{{a^2}-1>0}\\{{a^2}-1≤1}\end{array}}\right.$,
∴1<a≤$\sqrt{2}$;
②若f(x)在R上单调递减,
则根据二次函数的单调性以及复合函数的性质,可得$\left\{{\begin{array}{l}{a<0}\\{{a^2}-1>0}\\{{a^2}-1≥1}\end{array}}\right.$,
∴a≤-$\sqrt{2}$.
综上,$1<a≤\sqrt{2}或a≤-\sqrt{2}$.
故选:C.

点评 本题考查函数单调性的定义,考查学生的计算能力和分类讨论的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.求下列方程的解集:
(1)2sin$\frac{2}{3}$x=1;
(2)2tan($\frac{π}{4}$-x)=$\sqrt{3}$;
(3)2cos(5x+$\frac{π}{3}$)+$\sqrt{2}$=0;
(4)3sin(2x+$\frac{π}{4}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=(a+1)lnx+$\frac{f'(1)-1}{3}$x2(a<-1)对任意的x1、x2>0,恒有|f(x1)-f(x2)|≥4|x1-x2|,则a的取值范围为(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知AB为单位圆上的弦,P为单位圆上的点,若f(λ)=|$\overrightarrow{BP}$-λ$\overrightarrow{BA}$|的最小值为m(其中λ∈R),P在单位圆上运动时,m的最大值为$\frac{3}{2}$,则|$\overrightarrow{AB}$|的值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在几何图形ABCDEF中,AB∥CD,AD=DC=CB=CF=1,∠ABC=60°,四边形ACEF为矩形,平面ACEF⊥平面ABCD.
(1)求证:平面FBC⊥平面ACEF;
(2)在AB上确定一点P,使得平面FCP∥平面AED;
(3)求三棱锥E-CDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将函数y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象向右平移$\frac{π}{3}$个单位,再将图象上所有点的横坐标缩短为原来的$\frac{1}{2}$倍(纵坐标不变),所得图象的解析式为y=sinx,则ω,φ的值分别为(  )
A.ω=$\frac{1}{2},φ=\frac{π}{6}$B.$ω=\frac{1}{2},φ=-\frac{π}{6}$C.$ω=2,φ=\frac{π}{6}$D.$ω=2,φ=-\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知实数x,y满足$\left\{\begin{array}{l}x≥1\\ x-2y+m≥0\\ x-y≤0\end{array}\right.$,若z=4x-y的最大值是15,则m=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某工厂生产甲,乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如表:
测试指标[70,76)[76,82)[82,88)[88,94)[94,100]
芯片甲81240328
芯片乙71840296
(Ⅰ)试分别估计芯片甲,芯片乙为合格品的概率;
(Ⅱ)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(1)的前提下,记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X的概率分布及生产1件芯片甲和1件芯片乙所得总利润的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数y=sinωx(ω>0)在区间$[{-\frac{π}{5},\frac{π}{4}}]$上是增函数,则ω的取值范围为(0,2].

查看答案和解析>>

同步练习册答案