精英家教网 > 高中数学 > 题目详情
19.已知AB为单位圆上的弦,P为单位圆上的点,若f(λ)=|$\overrightarrow{BP}$-λ$\overrightarrow{BA}$|的最小值为m(其中λ∈R),P在单位圆上运动时,m的最大值为$\frac{3}{2}$,则|$\overrightarrow{AB}$|的值为$\sqrt{3}$.

分析 设λ$\overrightarrow{BA}$=$\overrightarrow{BC}$,则$\overrightarrow{BP}$-λ$\overrightarrow{BA}$=$\overrightarrow{BP}$-$\overrightarrow{BC}$=$\overrightarrow{CP}$,而点C在直线AB上,则问题即是求动点P到直线AB上的点C距离的最值问题,则CP⊥AB时,距离最小,由CP过圆心O时,取得最大值,再由垂径定理和勾股定理,即可得到AB的长.

解答 解:设λ$\overrightarrow{BA}$=$\overrightarrow{BC}$,则$\overrightarrow{BP}$-λ$\overrightarrow{BA}$=$\overrightarrow{BP}$-$\overrightarrow{BC}$=$\overrightarrow{CP}$,
又C点在直线AB上,
要求f(λ)=|$\overrightarrow{BP}$-λ$\overrightarrow{BA}$|的最小值,
即求|$\overrightarrow{CP}$|的最小值,显然当CP⊥AB时,CP最小,
可得f(λ)的最小值m为点P到AB的距离
又m的最大值为$\frac{3}{2}$,可得CP过圆心O时m取得最大值,
即有|$\overrightarrow{AB}$|=2$\sqrt{{1}^{2}-(\frac{3}{2}-1)^{2}}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查向量共线定理的运用,以及圆的垂径定理和勾股定理的运用,同时考查最值的求法,注意运用几何方法和数形结合的思想方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.抛掷两次骰子,求:
(1)两次都出现1点的概率;
(2)恰有一次出现1点的概率;
(3)没有出现1点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知A(-3,2),$\overrightarrow{AB}$=(6,0),则线段AB中点的坐标是(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知正实数a,b,c满足a+b2+c3=1.
(Ⅰ)求$\frac{1}{a^2}$+$\frac{1}{b^4}$+$\frac{1}{c^6}$的最小值m;
(Ⅱ)在(Ⅰ)的条件下,若|x-d|+|x+16|≥m恒成立,求实数d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{m}$=($\sqrt{3}$sinx-cosx,1),$\overrightarrow{n}$=(cosx,$\frac{1}{2}$),若f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)已知△ABC的三内角A,B,C的对边分别为a,b,c,f($\frac{A}{2}$+$\frac{π}{12}$)=$\frac{\sqrt{3}}{2}$(A为锐角),sinBsinC=$\frac{2}{3}$,△ABC的面积为2$\sqrt{3}$,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义在R上的函数y=f(x),如果函数图象上任意一点都在曲线y2=|x|上,则下列结论正确的是①④⑤(写出所有正确结论的序号).
①f(0)=0;
②函数y=f(x)值域为R;
③函数y=f(x)是奇函数;
④函数y=f(x)的图象与直线x=1有且仅有一个交点;
⑤函数y=f(x)的图象与直线y=1最多有两个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若f(x)=$\left\{\begin{array}{l}a{x^2}+1,x≥0\\({a^2}-1){e^{ax}},x<0\end{array}$(a≠±1),在定义域(-∞,+∞)上是单调函数,则a的取值范围是(  )
A.(1,$\sqrt{2}$]B.[-$\sqrt{2}$,-1)∪[${\sqrt{2}$,+∞)C.(-∞,-$\sqrt{2}}$]∪(1,$\sqrt{2}}$]D.(0,$\frac{2}{3}}$)∪[${\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$满足$\overrightarrow a$+$\overrightarrow b$+$\overrightarrow c$=$\overrightarrow 0$且$\overrightarrow a$⊥$\overrightarrow c$,|${\overrightarrow b}$|=2|${\overrightarrow a}$|,则tan<$\overrightarrow{a}$,$\overrightarrow{b}$>=(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=aex-be-x-cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为2-c
(1)确定a,b的值
(2)当c=1时,判断f(x)的单调性
(3)若f(x)有极值,求c的取值范围.

查看答案和解析>>

同步练习册答案