精英家教网 > 高中数学 > 题目详情
18.函数g(x)=Asinωx(A>0,ω>0)的最大值为2,其图象相邻两条对称轴之间的距离为$\frac{π}{2}$,将g(x)向右平移$\frac{π}{12}$个单位,再向上平移一个单位得到f(x)的图象
(1)求函数f(x)的解析式;
(2)设$α∈(0,\frac{π}{2})$,则$f(\frac{α}{2})=2$,求α的值.

分析 (1)通过函数的最大值求出A,通过对称轴求出周期,利用周期公式求出ω,得到函数的解析式.
(2)通过f(x)的解析式,求出sin($α-\frac{π}{6}$)=$\frac{1}{2}$,通过α的范围,即可求出α的值.

解答 解:(1)∵函数f(x)的最大值是2,
∴A=2.
∵函数图象的相邻两条对称轴之间的距离为$\frac{π}{2}$,
∴最小正周期T=π,
∴ω=2.
故函数f(x)的解析式为f(x)=2sin(2x-$\frac{π}{6}$)+1…(6分)
(2)∵f($\frac{α}{2}$)=2sin($α-\frac{π}{6}$)+1=2,
即sin($α-\frac{π}{6}$)=$\frac{1}{2}$,…(9分)
∵0$<α<\frac{π}{2}$,
∴-$\frac{π}{6}$$<α-\frac{π}{6}$$<\frac{π}{3}$,…(10分)
∴$α-\frac{π}{6}$=$\frac{π}{6}$,故$α=\frac{π}{3}$…(12分)

点评 本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,三角函数的恒等变换及化简求值,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.将函数y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象向右平移$\frac{π}{3}$个单位,再将图象上所有点的横坐标缩短为原来的$\frac{1}{2}$倍(纵坐标不变),所得图象的解析式为y=sinx,则ω,φ的值分别为(  )
A.ω=$\frac{1}{2},φ=\frac{π}{6}$B.$ω=\frac{1}{2},φ=-\frac{π}{6}$C.$ω=2,φ=\frac{π}{6}$D.$ω=2,φ=-\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设全集U={-3,-2,-1,0,1,2,3},子集A={0,a,a+3},B={b,b+1,3}.已知A,B至少有一个公共元素2,求a,b的值和A∩∁UB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a>0,b>0,且$\frac{1}{a}+\frac{1}{b}=1$.
(Ⅰ)求a+4b 的最小值;
(Ⅱ)求证:$\frac{b^2}{a}+\frac{a^2}{b}≥\frac{4ab}{a+b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数y=sinωx(ω>0)在区间$[{-\frac{π}{5},\frac{π}{4}}]$上是增函数,则ω的取值范围为(0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C所对的边分别为a,b,c,且$\sqrt{2}$asinA=($\sqrt{2}$b-c)sinB+($\sqrt{2}$c-b)sinC.
(1)求角A的大小;
(2)若a=$\sqrt{10}$,cosB=$\frac{{2\sqrt{5}}}{5}$,D为AC的中点,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知幂函数f(x)=${x}^{-{m}^{2}+2m+3}$(m∈N)图象关于原点对称,且在[0,+∞)上为增函数.
(1)求函数 f (x)的解析式;
(2)若f(2x2-1)>f(3x-2),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$sinα-cosα=\sqrt{2}$,α∈(0,π),则sin2α=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若集合A={x|1≤2x≤8},B={x|log2(x2-x)>1},则A∩B=(  )
A.(2,3]B.[2,3]C.(-∞,0)∪(0,2]D.(-∞,-1)∪[0,3]

查看答案和解析>>

同步练习册答案